|
|
CVE-ID | ||
---|---|---|
CVE-2022-35970 |
• CVSS Severity Rating • Fix Information • Vulnerable Software Versions • SCAP Mappings • CPE Information
|
|
Description | ||
TensorFlow is an open source platform for machine learning. If `QuantizedInstanceNorm` is given `x_min` or `x_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue. | ||
References | ||
Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete. | ||
|
||
Assigning CNA | ||
GitHub (maintainer security advisories) | ||
Date Record Created | ||
20220715 | Disclaimer: The record creation date may reflect when the CVE ID was allocated or reserved, and does not necessarily indicate when this vulnerability was discovered, shared with the affected vendor, publicly disclosed, or updated in CVE. | |
Phase (Legacy) | ||
Assigned (20220715) | ||
Votes (Legacy) | ||
Comments (Legacy) | ||
Proposed (Legacy) | ||
N/A | ||
This is an record on the CVE List, which provides common identifiers for publicly known cybersecurity vulnerabilities. | ||
You can also search by reference using the CVE Reference Maps.
|
||
For More Information: CVE Request Web Form (select "Other" from dropdown) |