CVE-ID

CVE-2022-41894

• CVSS Severity Rating • Fix Information • Vulnerable Software Versions • SCAP Mappings • CPE Information
Description
TensorFlow is an open source platform for machine learning. The reference kernel of the `CONV_3D_TRANSPOSE` TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of `data_ptr += num_channels;` it should be `data_ptr += output_num_channels;` as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels. An attacker can craft a model with a specific number of input channels. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter. We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
References
Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.
Assigning CNA
GitHub (maintainer security advisories)
Date Record Created
20220930 Disclaimer: The record creation date may reflect when the CVE ID was allocated or reserved, and does not necessarily indicate when this vulnerability was discovered, shared with the affected vendor, publicly disclosed, or updated in CVE.
Phase (Legacy)
Assigned (20220930)
Votes (Legacy)
Comments (Legacy)
Proposed (Legacy)
N/A
This is a record on the CVE List, which provides common identifiers for publicly known cybersecurity vulnerabilities.