Search Results

There are 8 CVE Records that match your search.
Name Description
CVE-2024-27013 In the Linux kernel, the following vulnerability has been resolved: tun: limit printing rate when illegal packet received by tun dev vhost_worker will call tun call backs to receive packets. If too many illegal packets arrives, tun_do_read will keep dumping packet contents. When console is enabled, it will costs much more cpu time to dump packet and soft lockup will be detected. net_ratelimit mechanism can be used to limit the dumping rate. PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980" #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e #3 [fffffe00003fced0] do_nmi at ffffffff8922660d #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663 [exception RIP: io_serial_in+20] RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002 RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000 RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0 RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020 R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124 #11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07 #12 [ffffa65531497b68] printk at ffffffff89318306 #13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765 #14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun] #15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun] #16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net] #17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost] #18 [ffffa65531497f10] kthread at ffffffff892d2e72 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f
CVE-2024-26976 In the Linux kernel, the following vulnerability has been resolved: KVM: Always flush async #PF workqueue when vCPU is being destroyed Always flush the per-vCPU async #PF workqueue when a vCPU is clearing its completion queue, e.g. when a VM and all its vCPUs is being destroyed. KVM must ensure that none of its workqueue callbacks is running when the last reference to the KVM _module_ is put. Gifting a reference to the associated VM prevents the workqueue callback from dereferencing freed vCPU/VM memory, but does not prevent the KVM module from being unloaded before the callback completes. Drop the misguided VM refcount gifting, as calling kvm_put_kvm() from async_pf_execute() if kvm_put_kvm() flushes the async #PF workqueue will result in deadlock. async_pf_execute() can't return until kvm_put_kvm() finishes, and kvm_put_kvm() can't return until async_pf_execute() finishes: WARNING: CPU: 8 PID: 251 at virt/kvm/kvm_main.c:1435 kvm_put_kvm+0x2d/0x320 [kvm] Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel kvm irqbypass CPU: 8 PID: 251 Comm: kworker/8:1 Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: events async_pf_execute [kvm] RIP: 0010:kvm_put_kvm+0x2d/0x320 [kvm] Call Trace: <TASK> async_pf_execute+0x198/0x260 [kvm] process_one_work+0x145/0x2d0 worker_thread+0x27e/0x3a0 kthread+0xba/0xe0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x11/0x20 </TASK> ---[ end trace 0000000000000000 ]--- INFO: task kworker/8:1:251 blocked for more than 120 seconds. Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/8:1 state:D stack:0 pid:251 ppid:2 flags:0x00004000 Workqueue: events async_pf_execute [kvm] Call Trace: <TASK> __schedule+0x33f/0xa40 schedule+0x53/0xc0 schedule_timeout+0x12a/0x140 __wait_for_common+0x8d/0x1d0 __flush_work.isra.0+0x19f/0x2c0 kvm_clear_async_pf_completion_queue+0x129/0x190 [kvm] kvm_arch_destroy_vm+0x78/0x1b0 [kvm] kvm_put_kvm+0x1c1/0x320 [kvm] async_pf_execute+0x198/0x260 [kvm] process_one_work+0x145/0x2d0 worker_thread+0x27e/0x3a0 kthread+0xba/0xe0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x11/0x20 </TASK> If kvm_clear_async_pf_completion_queue() actually flushes the workqueue, then there's no need to gift async_pf_execute() a reference because all invocations of async_pf_execute() will be forced to complete before the vCPU and its VM are destroyed/freed. And that in turn fixes the module unloading bug as __fput() won't do module_put() on the last vCPU reference until the vCPU has been freed, e.g. if closing the vCPU file also puts the last reference to the KVM module. Note that kvm_check_async_pf_completion() may also take the work item off the completion queue and so also needs to flush the work queue, as the work will not be seen by kvm_clear_async_pf_completion_queue(). Waiting on the workqueue could theoretically delay a vCPU due to waiting for the work to complete, but that's a very, very small chance, and likely a very small delay. kvm_arch_async_page_present_queued() unconditionally makes a new request, i.e. will effectively delay entering the guest, so the remaining work is really just: trace_kvm_async_pf_completed(addr, cr2_or_gpa); __kvm_vcpu_wake_up(vcpu); mmput(mm); and mmput() can't drop the last reference to the page tables if the vCPU is still alive, i.e. the vCPU won't get stuck tearing down page tables. Add a helper to do the flushing, specifically to deal with "wakeup all" work items, as they aren't actually work items, i.e. are never placed in a workqueue. Trying to flush a bogus workqueue entry rightly makes __flush_work() complain (kudos to whoever added that sanity check). Note, commit 5f6de5cbebee ("KVM: Prevent module exit until al ---truncated---
CVE-2019-3900 An infinite loop issue was found in the vhost_net kernel module in Linux Kernel up to and including v5.1-rc6, while handling incoming packets in handle_rx(). It could occur if one end sends packets faster than the other end can process them. A guest user, maybe remote one, could use this flaw to stall the vhost_net kernel thread, resulting in a DoS scenario.
CVE-2019-14835 A buffer overflow flaw was found, in versions from 2.6.34 to 5.2.x, in the way Linux kernel's vhost functionality that translates virtqueue buffers to IOVs, logged the buffer descriptors during migration. A privileged guest user able to pass descriptors with invalid length to the host when migration is underway, could use this flaw to increase their privileges on the host.
CVE-2018-16880 A flaw was found in the Linux kernel's handle_rx() function in the [vhost_net] driver. A malicious virtual guest, under specific conditions, can trigger an out-of-bounds write in a kmalloc-8 slab on a virtual host which may lead to a kernel memory corruption and a system panic. Due to the nature of the flaw, privilege escalation cannot be fully ruled out. Versions from v4.16 and newer are vulnerable.
CVE-2014-0077 drivers/vhost/net.c in the Linux kernel before 3.13.10, when mergeable buffers are disabled, does not properly validate packet lengths, which allows guest OS users to cause a denial of service (memory corruption and host OS crash) or possibly gain privileges on the host OS via crafted packets, related to the handle_rx and get_rx_bufs functions.
CVE-2014-0055 The get_rx_bufs function in drivers/vhost/net.c in the vhost-net subsystem in the Linux kernel package before 2.6.32-431.11.2 on Red Hat Enterprise Linux (RHEL) 6 does not properly handle vhost_get_vq_desc errors, which allows guest OS users to cause a denial of service (host OS crash) via unspecified vectors.
CVE-2012-2119 Buffer overflow in the macvtap device driver in the Linux kernel before 3.4.5, when running in certain configurations, allows privileged KVM guest users to cause a denial of service (crash) via a long descriptor with a long vector length.
  
You can also search by reference using the CVE Reference Maps.
For More Information:  CVE Request Web Form (select “Other” from dropdown)