Search Results

There are 129 CVE Records that match your search.
Name Description
CVE-2024-8375 There exists a use after free vulnerability in Reverb. Reverb supports the VARIANT datatype, which is supposed to represent an arbitrary object in C++. When a tensor proto of type VARIANT is unpacked, memory is first allocated to store the entire tensor, and a ctor is called on each instance. Afterwards, Reverb copies the content in tensor_content to the previously mentioned pre-allocated memory, which results in the bytes in tensor_content overwriting the vtable pointers of all the objects which were previously allocated. Reverb exposes 2 relevant gRPC endpoints: InsertStream and SampleStream. The attacker can insert this stream into the server’s database, then when the client next calls SampleStream they will unpack the tensor into RAM, and when any method on that object is called (including its destructor) the attacker gains control of the Program Counter. We recommend upgrading past git commit https://github.com/google-deepmind/reverb/commit/6a0dcf4c9e842b7f999912f792aaa6f6bd261a25
CVE-2024-42479 llama.cpp provides LLM inference in C/C++. The unsafe `data` pointer member in the `rpc_tensor` structure can cause arbitrary address writing. This vulnerability is fixed in b3561.
CVE-2024-42478 llama.cpp provides LLM inference in C/C++. The unsafe `data` pointer member in the `rpc_tensor` structure can cause arbitrary address reading. This vulnerability is fixed in b3561.
CVE-2024-42477 llama.cpp provides LLM inference in C/C++. The unsafe `type` member in the `rpc_tensor` structure can cause `global-buffer-overflow`. This vulnerability may lead to memory data leakage. The vulnerability is fixed in b3561.
CVE-2024-27318 Versions of the package onnx before and including 1.15.0 are vulnerable to Directory Traversal as the external_data field of the tensor proto can have a path to the file which is outside the model current directory or user-provided directory. The vulnerability occurs as a bypass for the patch added for CVE-2022-25882.
CVE-2023-33976 TensorFlow is an end-to-end open source platform for machine learning. `array_ops.upper_bound` causes a segfault when not given a rank 2 tensor. The fix will be included in TensorFlow 2.13 and will also cherrypick this commit on TensorFlow 2.12.
CVE-2023-29941 llvm-project commit a0138390 was discovered to contain a segmentation fault via the component matchAndRewriteSortOp<mlir::sparse_tensor::SortOp>(mlir::sparse_tensor::SortOp.
CVE-2023-25675 TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.Bincount` segfaults when given a parameter `weights` that is neither the same shape as parameter `arr` nor a length-0 tensor. A fix is included in TensorFlow 2.12.0 and 2.11.1.
CVE-2022-41911 TensorFlow is an open source platform for machine learning. When printing a tensor, we get it's data as a `const char*` array (since that's the underlying storage) and then we typecast it to the element type. However, conversions from `char` to `bool` are undefined if the `char` is not `0` or `1`, so sanitizers/fuzzers will crash. The issue has been patched in GitHub commit `1be74370327`. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.10.1, TensorFlow 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
CVE-2022-41909 TensorFlow is an open source platform for machine learning. An input `encoded` that is not a valid `CompositeTensorVariant` tensor will trigger a segfault in `tf.raw_ops.CompositeTensorVariantToComponents`. We have patched the issue in GitHub commits bf594d08d377dc6a3354d9fdb494b32d45f91971 and 660ce5a89eb6766834bdc303d2ab3902aef99d3d. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
CVE-2022-41889 TensorFlow is an open source platform for machine learning. If a list of quantized tensors is assigned to an attribute, the pywrap code fails to parse the tensor and returns a `nullptr`, which is not caught. An example can be seen in `tf.compat.v1.extract_volume_patches` by passing in quantized tensors as input `ksizes`. We have patched the issue in GitHub commit e9e95553e5411834d215e6770c81a83a3d0866ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
CVE-2022-41885 TensorFlow is an open source platform for machine learning. When `tf.raw_ops.FusedResizeAndPadConv2D` is given a large tensor shape, it overflows. We have patched the issue in GitHub commit d66e1d568275e6a2947de97dca7a102a211e01ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
CVE-2022-36026 TensorFlow is an open source platform for machine learning. If `QuantizeAndDequantizeV3` is given a nonscalar `num_bits` input tensor, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit f3f9cb38ecfe5a8a703f2c4a8fead434ef291713. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35993 TensorFlow is an open source platform for machine learning. When `SetSize` receives an input `set_shape` that is not a 1D tensor, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit cf70b79d2662c0d3c6af74583641e345fc939467. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35989 TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35987 TensorFlow is an open source platform for machine learning. `DenseBincount` assumes its input tensor `weights` to either have the same shape as its input tensor `input` or to be length-0. A different `weights` shape will trigger a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf4c14353c2328636a18bfad1e151052c81d5f43. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35986 TensorFlow is an open source platform for machine learning. If `RaggedBincount` is given an empty input tensor `splits`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7a4591fd4f065f4fa903593bc39b2f79530a74b8. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35985 TensorFlow is an open source platform for machine learning. If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35982 TensorFlow is an open source platform for machine learning. If `SparseBincount` is given inputs for `indices`, `values`, and `dense_shape` that do not make a valid sparse tensor, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 40adbe4dd15b582b0210dfbf40c243a62f5119fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35963 TensorFlow is an open source platform for machine learning. The implementation of `FractionalAvgPoolGrad` does not fully validate the input `orig_input_tensor_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 03a659d7be9a1154fdf5eeac221e5950fec07dad. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35960 TensorFlow is an open source platform for machine learning. In `core/kernels/list_kernels.cc's TensorListReserve`, `num_elements` is assumed to be a tensor of size 1. When a `num_elements` of more than 1 element is provided, then `tf.raw_ops.TensorListReserve` fails the `CHECK_EQ` in `CheckIsAlignedAndSingleElement`. We have patched the issue in GitHub commit b5f6fbfba76576202b72119897561e3bd4f179c7. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35939 TensorFlow is an open source platform for machine learning. The `ScatterNd` function takes an input argument that determines the indices of of the output tensor. An input index greater than the output tensor or less than zero will either write content at the wrong index or trigger a crash. We have patched the issue in GitHub commit b4d4b4cb019bd7240a52daa4ba61e3cc814f0384. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-35934 TensorFlow is an open source platform for machine learning. The implementation of tf.reshape op in TensorFlow is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by overflowing the number of elements in a tensor. This issue has been patched in GitHub commit 61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
CVE-2022-29210 TensorFlow is an open source platform for machine learning. In version 2.8.0, the `TensorKey` hash function used total estimated `AllocatedBytes()`, which (a) is an estimate per tensor, and (b) is a very poor hash function for constants (e.g. `int32_t`). It also tried to access individual tensor bytes through `tensor.data()` of size `AllocatedBytes()`. This led to ASAN failures because the `AllocatedBytes()` is an estimate of total bytes allocated by a tensor, including any pointed-to constructs (e.g. strings), and does not refer to contiguous bytes in the `.data()` buffer. The discoverers could not use this byte vector anyway because types such as `tstring` include pointers, whereas they needed to hash the string values themselves. This issue is patched in Tensorflow versions 2.9.0 and 2.8.1.
CVE-2022-29204 TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a positive scalar but there is no validation. Since this value is used to allocate the output tensor, a negative value would result in a `CHECK`-failure (assertion failure), as per TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
CVE-2022-29203 TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SpaceToBatchND` (in all backends such as XLA and handwritten kernels) is vulnerable to an integer overflow: The result of this integer overflow is used to allocate the output tensor, hence we get a denial of service via a `CHECK`-failure (assertion failure), as in TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
CVE-2022-29200 TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LSTMBlockCell` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate the ranks of any of the arguments to this API call. This results in `CHECK`-failures when the elements of the tensor are accessed. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
CVE-2022-25882 Versions of the package onnx before 1.13.0 are vulnerable to Directory Traversal as the external_data field of the tensor proto can have a path to the file which is outside the model current directory or user-provided directory, for example "../../../etc/passwd"
CVE-2022-23588 Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-23583 Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that any binary op would trigger `CHECK` failures. This occurs when the protobuf part corresponding to the tensor arguments is modified such that the `dtype` no longer matches the `dtype` expected by the op. In that case, calling the templated binary operator for the binary op would receive corrupted data, due to the type confusion involved. If `Tin` and `Tout` don't match the type of data in `out` and `input_*` tensors then `flat<*>` would interpret it wrongly. In most cases, this would be a silent failure, but we have noticed scenarios where this results in a `CHECK` crash, hence a denial of service. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-23580 Tensorflow is an Open Source Machine Learning Framework. During shape inference, TensorFlow can allocate a large vector based on a value from a tensor controlled by the user. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-23575 Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateTensorSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve a tensor with large enough number of elements. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-23573 Tensorflow is an Open Source Machine Learning Framework. The implementation of `AssignOp` can result in copying uninitialized data to a new tensor. This later results in undefined behavior. The implementation has a check that the left hand side of the assignment is initialized (to minimize number of allocations), but does not check that the right hand side is also initialized. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-23571 Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments, if the tensors have an invalid `dtype` and 0 elements or an invalid shape. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-23570 Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, TensorFlow might do a null-dereference if attributes of some mutable arguments to some operations are missing from the proto. This is guarded by a `DCHECK`. However, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the dereferencing of the null pointer, whereas in the second case it results in a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
CVE-2022-23564 Tensorflow is an Open Source Machine Learning Framework. When decoding a resource handle tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-21736 Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseTensorSliceDataset` has an undefined behavior: under certain condition it can be made to dereference a `nullptr` value. The 3 input arguments to `SparseTensorSliceDataset` represent a sparse tensor. However, there are some preconditions that these arguments must satisfy but these are not validated in the implementation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-21734 Tensorflow is an Open Source Machine Learning Framework. The implementation of `MapStage` is vulnerable a `CHECK`-fail if the key tensor is not a scalar. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-21731 Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ConcatV2` can be used to trigger a denial of service attack via a segfault caused by a type confusion. The `axis` argument is translated into `concat_dim` in the `ConcatShapeHelper` helper function. Then, a value for `min_rank` is computed based on `concat_dim`. This is then used to validate that the `values` tensor has at least the required rank. However, `WithRankAtLeast` receives the lower bound as a 64-bits value and then compares it against the maximum 32-bits integer value that could be represented. Due to the fact that `min_rank` is a 32-bits value and the value of `axis`, the `rank` argument is a negative value, so the error check is bypassed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-21726 Tensorflow is an Open Source Machine Learning Framework. The implementation of `Dequantize` does not fully validate the value of `axis` and can result in heap OOB accesses. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked and this results in reading past the end of the array containing the dimensions of the input tensor. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2021-41219 TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41215 TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `DeserializeSparse` can trigger a null pointer dereference. This is because the shape inference function assumes that the `serialize_sparse` tensor is a tensor with positive rank (and having `3` as the last dimension). The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41211 TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `QuantizeV2` can trigger a read outside of bounds of heap allocated array. This occurs whenever `axis` is a negative value less than `-1`. In this case, we are accessing data before the start of a heap buffer. The code allows `axis` to be an optional argument (`s` would contain an `error::NOT_FOUND` error code). Otherwise, it assumes that `axis` is a valid index into the dimensions of the `input` tensor. If `axis` is less than `-1` then this results in a heap OOB read. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected.
CVE-2021-41209 TensorFlow is an open source platform for machine learning. In affected versions the implementations for convolution operators trigger a division by 0 if passed empty filter tensor arguments. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41206 TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don't have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41204 TensorFlow is an open source platform for machine learning. In affected versions during TensorFlow's Grappler optimizer phase, constant folding might attempt to deep copy a resource tensor. This results in a segfault, as these tensors are supposed to not change. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41199 TensorFlow is an open source platform for machine learning. In affected versions if `tf.image.resize` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41198 TensorFlow is an open source platform for machine learning. In affected versions if `tf.tile` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41197 TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-41195 TensorFlow is an open source platform for machine learning. In affected versions the implementation of `tf.math.segment_*` operations results in a `CHECK`-fail related abort (and denial of service) if a segment id in `segment_ids` is large. This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs): the implementation (both on CPU and GPU) computes the output shape using `AddDim`. However, if the number of elements in the tensor overflows an `int64_t` value, `AddDim` results in a `CHECK` failure which provokes a `std::abort`. Instead, code should use `AddDimWithStatus`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CVE-2021-37692 TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn't checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version.
CVE-2021-37683 TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37681 TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor->is_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37679 TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37677 TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37673 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37668 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.UnravelIndex` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36) does not check that the tensor subsumed by `dims` is not empty. Hence, if one element of `dims` is 0, the implementation does a division by 0. We have patched the issue in GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37667 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.UnicodeEncode`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) reads the first dimension of the `input_splits` tensor before validating that this tensor is not empty. We have patched the issue in GitHub commit 2e0ee46f1a47675152d3d865797a18358881d7a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37666 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToVariant`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) has an incomplete validation of the splits values, missing the case when the argument would be empty. We have patched the issue in GitHub commit be7a4de6adfbd303ce08be4332554dff70362612. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37665 TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37663 TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37658 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixSetDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37657 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37656 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToSparse`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) has an incomplete validation of the splits values: it does not check that they are in increasing order. We have patched the issue in GitHub commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37654 TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37651 TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37649 TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37647 TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices->dim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37643 TensorFlow is an end-to-end open source platform for machine learning. If a user does not provide a valid padding value to `tf.raw_ops.MatrixDiagPartOp`, then the code triggers a null pointer dereference (if input is empty) or produces invalid behavior, ignoring all values after the first. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) reads the first value from a tensor buffer without first checking that the tensor has values to read from. We have patched the issue in GitHub commit 482da92095c4d48f8784b1f00dda4f81c28d2988. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37641 TensorFlow is an end-to-end open source platform for machine learning. In affected versions if the arguments to `tf.raw_ops.RaggedGather` don't determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors. We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37639 TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37638 TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37635 TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of sparse reduction operations in TensorFlow can trigger accesses outside of bounds of heap allocated data. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) fails to validate that each reduction group does not overflow and that each corresponding index does not point to outside the bounds of the input tensor. We have patched the issue in GitHub commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-29614 TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.io.decode_raw` produces incorrect results and crashes the Python interpreter when combining `fixed_length` and wider datatypes. The implementation of the padded version(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the `fixed_length` value to the size of the type argument. The `fixed_length` argument is also used to determine the size needed for the output tensor(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the `out_data` pointer by `fixed_length * sizeof(T)` bytes whereas it only copied at most `fixed_length` bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29611 TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions.
CVE-2021-29609 TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29608 TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.RaggedTensorToTensor`, an attacker can exploit an undefined behavior if input arguments are empty. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L356-L360) only checks that one of the tensors is not empty, but does not check for the other ones. There are multiple `DCHECK` validations to prevent heap OOB, but these are no-op in release builds, hence they don't prevent anything. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29607 TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29606 TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB read on heap in the TFLite implementation of `Split_V`(https://github.com/tensorflow/tensorflow/blob/c59c37e7b2d563967da813fa50fe20b21f4da683/tensorflow/lite/kernels/split_v.cc#L99). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the `SizeOfDimension` function(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/kernel_util.h#L148-L150) will access data outside the bounds of the tensor shape array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29601 TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29592 TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29590 TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29589 TensorFlow is an end-to-end open source platform for machine learning. The reference implementation of the `GatherNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/reference_ops.h#L966). An attacker can craft a model such that `params` input would be an empty tensor. In turn, `params_shape.Dims(.)` would be zero, in at least one dimension. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29584 TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29581 TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.CTCBeamSearchDecoder`, an attacker can trigger denial of service via segmentation faults. The implementation(https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) fails to detect cases when the input tensor is empty and proceeds to read data from a null buffer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29578 TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29574 TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29573 TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29567 TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.SparseDenseCwiseMul`, an attacker can trigger denial of service via `CHECK`-fails or accesses to outside the bounds of heap allocated data. Since the implementation(https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) only validates the rank of the input arguments but no constraints between dimensions(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), an attacker can abuse them to trigger internal `CHECK` assertions (and cause program termination, denial of service) or to write to memory outside of bounds of heap allocated tensor buffers. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29565 TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec<>()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29561 TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar<T>()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29560 TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.RaggedTensorToTensor`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) uses the same index to access two arrays in parallel. Since the user controls the shape of the input arguments, an attacker could trigger a heap OOB access when `parent_output_index` is shorter than `row_split`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29559 TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29557 TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29556 TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.Reverse`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/36229ea9e9451dac14a8b1f4711c435a1d84a594/tensorflow/core/kernels/reverse_op.cc#L75-L76) performs a division based on the first dimension of the tensor argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29555 TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29552 TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by controlling the values of `num_segments` tensor argument for `UnsortedSegmentJoin`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) assumes that the `num_segments` tensor is a valid scalar. Since the tensor is empty the `CHECK` involved in `.scalar<T>()()` that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29541 TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29540 TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29539 TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.ImmutableConst`(https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) with a `dtype` of `tf.resource` or `tf.variant` results in a segfault in the implementation as code assumes that the tensor contents are pure scalars. We have patched the issue in 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 and will release TensorFlow 2.5.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. If using `tf.raw_ops.ImmutableConst` in code, you can prevent the segfault by inserting a filter for the `dtype` argument.
CVE-2021-29534 TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29532 TensorFlow is an end-to-end open source platform for machine learning. An attacker can force accesses outside the bounds of heap allocated arrays by passing in invalid tensor values to `tf.raw_ops.RaggedCross`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efea03b38fb8d3b81762237dc85e579cc5fc6e87/tensorflow/core/kernels/ragged_cross_op.cc#L456-L487) lacks validation for the user supplied arguments. Each of the above branches call a helper function after accessing array elements via a `*_list[next_*]` pattern, followed by incrementing the `next_*` index. However, as there is no validation that the `next_*` values are in the valid range for the corresponding `*_list` arrays, this results in heap OOB reads. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29531 TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat<T>().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29523 TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29521 TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap<T>` (i.e., `std::vector<absl::flat_hash_map<int64,T>>`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.
CVE-2021-29519 TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29516 TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29515 TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29514 TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L446). Before the `for` loop, `batch_idx` is set to 0. The attacker sets `splits(0)` to be 7, hence the `while` loop does not execute and `batch_idx` remains 0. This then results in writing to `out(-1, bin)`, which is before the heap allocated buffer for the output tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
CVE-2021-29512 TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
CVE-2020-26271 In affected versions of TensorFlow under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality. However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays. In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
CVE-2020-26268 In affected versions of TensorFlow the tf.raw_ops.ImmutableConst operation returns a constant tensor created from a memory mapped file which is assumed immutable. However, if the type of the tensor is not an integral type, the operation crashes the Python interpreter as it tries to write to the memory area. If the file is too small, TensorFlow properly returns an error as the memory area has fewer bytes than what is needed for the tensor it creates. However, as soon as there are enough bytes, the above snippet causes a segmentation fault. This is because the allocator used to return the buffer data is not marked as returning an opaque handle since the needed virtual method is not overridden. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
CVE-2020-26266 In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
CVE-2020-15265 In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
CVE-2020-15214 In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
CVE-2020-15213 In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a denial of service by causing an out of memory allocation in the implementation of segment sum. Since code uses the last element of the tensor holding them to determine the dimensionality of output tensor, attackers can use a very large value to trigger a large allocation. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to limit the maximum value in the segment ids tensor. This only handles the case when the segment ids are stored statically in the model, but a similar validation could be done if the segment ids are generated at runtime, between inference steps. However, if the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
CVE-2020-15212 In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `output_data` buffer. This might result in a segmentation fault but it can also be used to further corrupt the memory and can be chained with other vulnerabilities to create more advanced exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are all positive, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
CVE-2020-15211 In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don't expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code.
CVE-2020-15210 In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
CVE-2020-15209 In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one. The runtime assumes that these buffers are written to before a possible read, hence they are initialized with `nullptr`. However, by changing the buffer index for a tensor and implicitly converting that tensor to be a read-write one, as there is nothing in the model that writes to it, we get a null pointer dereference. The issue is patched in commit 0b5662bc, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
CVE-2020-15208 In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can craft cases where this is larger than that of the second tensor. In turn, this would result in reads/writes outside of bounds since the interpreter will wrongly assume that there is enough data in both tensors. The issue is patched in commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
CVE-2020-15201 In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Hence, the code is prone to heap buffer overflow. If `split_values` does not end with a value at least `num_values` then the `while` loop condition will trigger a read outside of the bounds of `split_values` once `batch_idx` grows too large. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15200 In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Thus, the code sets up conditions to cause a heap buffer overflow. A `BatchedMap` is equivalent to a vector where each element is a hashmap. However, if the first element of `splits_values` is not 0, `batch_idx` will never be 1, hence there will be no hashmap at index 0 in `per_batch_counts`. Trying to access that in the user code results in a segmentation fault. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15199 In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the `splits` tensor has the minimum required number of elements. Code uses this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits` tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the operating system. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15198 In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has the same shape as the `values` one. The values in these tensors are always accessed in parallel. Thus, a shape mismatch can result in accesses outside the bounds of heap allocated buffers. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15197 In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15196 In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don't validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15193 In Tensorflow before versions 2.2.1 and 2.3.1, the implementation of `dlpack.to_dlpack` can be made to use uninitialized memory resulting in further memory corruption. This is because the pybind11 glue code assumes that the argument is a tensor. However, there is nothing stopping users from passing in a Python object instead of a tensor. The uninitialized memory address is due to a `reinterpret_cast` Since the `PyObject` is a Python object, not a TensorFlow Tensor, the cast to `EagerTensor` fails. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1.
CVE-2020-15190 In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `tf.raw_ops.Switch` operation takes as input a tensor and a boolean and outputs two tensors. Depending on the boolean value, one of the tensors is exactly the input tensor whereas the other one should be an empty tensor. However, the eager runtime traverses all tensors in the output. Since only one of the tensors is defined, the other one is `nullptr`, hence we are binding a reference to `nullptr`. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. In this case, this results in a segmentation fault The issue is patched in commit da8558533d925694483d2c136a9220d6d49d843c, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
  
You can also search by reference using the CVE Reference Maps.
For More Information:  CVE Request Web Form (select “Other” from dropdown)