Search Results

There are 21 CVE Records that match your search.
Name Description
CVE-2024-43402 Rust is a programming language. The fix for CVE-2024-24576, where `std::process::Command` incorrectly escaped arguments when invoking batch files on Windows, was incomplete. Prior to Rust version 1.81.0, it was possible to bypass the fix when the batch file name had trailing whitespace or periods (which are ignored and stripped by Windows). To determine whether to apply the `cmd.exe` escaping rules, the original fix for the vulnerability checked whether the command name ended with `.bat` or `.cmd`. At the time that seemed enough, as we refuse to invoke batch scripts with no file extension. Windows removes trailing whitespace and periods when parsing file paths. For example, `.bat. .` is interpreted by Windows as `.bat`, but the original fix didn't check for that. Affected users who are using Rust 1.77.2 or greater can remove the trailing whitespace (ASCII 0x20) and trailing periods (ASCII 0x2E) from the batch file name to bypass the incomplete fix and enable the mitigations. Users are affected if their code or one of their dependencies invoke a batch script on Windows with trailing whitespace or trailing periods in the name, and pass untrusted arguments to it. Rust 1.81.0 will update the standard library to apply the CVE-2024-24576 mitigations to all batch files invocations, regardless of the trailing chars in the file name.
CVE-2024-24576 Rust is a programming language. The Rust Security Response WG was notified that the Rust standard library prior to version 1.77.2 did not properly escape arguments when invoking batch files (with the `bat` and `cmd` extensions) on Windows using the `Command`. An attacker able to control the arguments passed to the spawned process could execute arbitrary shell commands by bypassing the escaping. The severity of this vulnerability is critical for those who invoke batch files on Windows with untrusted arguments. No other platform or use is affected. The `Command::arg` and `Command::args` APIs state in their documentation that the arguments will be passed to the spawned process as-is, regardless of the content of the arguments, and will not be evaluated by a shell. This means it should be safe to pass untrusted input as an argument. On Windows, the implementation of this is more complex than other platforms, because the Windows API only provides a single string containing all the arguments to the spawned process, and it's up to the spawned process to split them. Most programs use the standard C run-time argv, which in practice results in a mostly consistent way arguments are splitted. One exception though is `cmd.exe` (used among other things to execute batch files), which has its own argument splitting logic. That forces the standard library to implement custom escaping for arguments passed to batch files. Unfortunately it was reported that our escaping logic was not thorough enough, and it was possible to pass malicious arguments that would result in arbitrary shell execution. Due to the complexity of `cmd.exe`, we didn't identify a solution that would correctly escape arguments in all cases. To maintain our API guarantees, we improved the robustness of the escaping code, and changed the `Command` API to return an `InvalidInput` error when it cannot safely escape an argument. This error will be emitted when spawning the process. The fix is included in Rust 1.77.2. Note that the new escaping logic for batch files errs on the conservative side, and could reject valid arguments. Those who implement the escaping themselves or only handle trusted inputs on Windows can also use the `CommandExt::raw_arg` method to bypass the standard library's escaping logic.
CVE-2022-21658 Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency. The Rust Security Response WG was notified that the `std::fs::remove_dir_all` standard library function is vulnerable a race condition enabling symlink following (CWE-363). An attacker could use this security issue to trick a privileged program into deleting files and directories the attacker couldn't otherwise access or delete. Rust 1.0.0 through Rust 1.58.0 is affected by this vulnerability with 1.58.1 containing a patch. Note that the following build targets don't have usable APIs to properly mitigate the attack, and are thus still vulnerable even with a patched toolchain: macOS before version 10.10 (Yosemite) and REDOX. We recommend everyone to update to Rust 1.58.1 as soon as possible, especially people developing programs expected to run in privileged contexts (including system daemons and setuid binaries), as those have the highest risk of being affected by this. Note that adding checks in your codebase before calling remove_dir_all will not mitigate the vulnerability, as they would also be vulnerable to race conditions like remove_dir_all itself. The existing mitigation is working as intended outside of race conditions.
CVE-2021-31162 In the standard library in Rust before 1.52.0, a double free can occur in the Vec::from_iter function if freeing the element panics.
CVE-2021-28879 In the standard library in Rust before 1.52.0, the Zip implementation can report an incorrect size due to an integer overflow. This bug can lead to a buffer overflow when a consumed Zip iterator is used again.
CVE-2021-28878 In the standard library in Rust before 1.52.0, the Zip implementation calls __iterator_get_unchecked() more than once for the same index (under certain conditions) when next_back() and next() are used together. This bug could lead to a memory safety violation due to an unmet safety requirement for the TrustedRandomAccess trait.
CVE-2021-28877 In the standard library in Rust before 1.51.0, the Zip implementation calls __iterator_get_unchecked() for the same index more than once when nested. This bug can lead to a memory safety violation due to an unmet safety requirement for the TrustedRandomAccess trait.
CVE-2021-28876 In the standard library in Rust before 1.52.0, the Zip implementation has a panic safety issue. It calls __iterator_get_unchecked() more than once for the same index when the underlying iterator panics (in certain conditions). This bug could lead to a memory safety violation due to an unmet safety requirement for the TrustedRandomAccess trait.
CVE-2021-28875 In the standard library in Rust before 1.50.0, read_to_end() does not validate the return value from Read in an unsafe context. This bug could lead to a buffer overflow.
CVE-2021-28036 An issue was discovered in the quinn crate before 0.7.0 for Rust. It may have invalid memory access for certain versions of the standard library because it relies on a direct cast of std::net::SocketAddrV4 and std::net::SocketAddrV6 data structures.
CVE-2021-27376 An issue was discovered in the nb-connect crate before 1.0.3 for Rust. It may have invalid memory access for certain versions of the standard library because it relies on a direct cast of std::net::SocketAddrV4 and std::net::SocketAddrV6 data structures.
CVE-2020-36323 In the standard library in Rust before 1.52.0, there is an optimization for joining strings that can cause uninitialized bytes to be exposed (or the program to crash) if the borrowed string changes after its length is checked.
CVE-2020-36318 In the standard library in Rust before 1.49.0, VecDeque::make_contiguous has a bug that pops the same element more than once under certain condition. This bug could result in a use-after-free or double free.
CVE-2020-36317 In the standard library in Rust before 1.49.0, String::retain() function has a panic safety problem. It allows creation of a non-UTF-8 Rust string when the provided closure panics. This bug could result in a memory safety violation when other string APIs assume that UTF-8 encoding is used on the same string.
CVE-2019-12083 The Rust Programming Language Standard Library 1.34.x before 1.34.2 contains a stabilized method which, if overridden, can violate Rust's safety guarantees and cause memory unsafety. If the `Error::type_id` method is overridden then any type can be safely cast to any other type, causing memory safety vulnerabilities in safe code (e.g., out-of-bounds write or read). Code that does not manually implement Error::type_id is unaffected.
CVE-2019-1010299 The Rust Programming Language Standard Library 1.18.0 and later is affected by: CWE-200: Information Exposure. The impact is: Contents of uninitialized memory could be printed to string or to log file. The component is: Debug trait implementation for std::collections::vec_deque::Iter. The attack vector is: The program needs to invoke debug printing for iterator over an empty VecDeque. The fixed version is: 1.30.0, nightly versions after commit b85e4cc8fadaabd41da5b9645c08c68b8f89908d.
CVE-2018-25008 In the standard library in Rust before 1.29.0, there is weak synchronization in the Arc::get_mut method. This synchronization issue can be lead to memory safety issues through race conditions.
CVE-2018-1000810 The Rust Programming Language Standard Library version 1.29.0, 1.28.0, 1.27.2, 1.27.1, 127.0, 126.2, 126.1, 126.0 contains a CWE-680: Integer Overflow to Buffer Overflow vulnerability in standard library that can result in buffer overflow. This attack appear to be exploitable via str::repeat, passed a large number, can overflow an internal buffer. This vulnerability appears to have been fixed in 1.29.1.
CVE-2018-1000657 Rust Programming Language Rust standard library version Commit bfa0e1f58acf1c28d500c34ed258f09ae021893e and later; stable release 1.3.0 and later contains a Buffer Overflow vulnerability in std::collections::vec_deque::VecDeque::reserve() function that can result in Arbitrary code execution, but no proof-of-concept exploit is currently published.. This vulnerability appears to have been fixed in after commit fdfafb510b1a38f727e920dccbeeb638d39a8e60; stable release 1.22.0 and later.
CVE-2017-20004 In the standard library in Rust before 1.19.0, there is a synchronization problem in the MutexGuard object. MutexGuards can be used across threads with any types, allowing for memory safety issues through race conditions.
CVE-2015-20001 In the standard library in Rust before 1.2.0, BinaryHeap is not panic-safe. The binary heap is left in an inconsistent state when the comparison of generic elements inside sift_up or sift_down_range panics. This bug leads to a drop of zeroed memory as an arbitrary type, which can result in a memory safety violation.
  
You can also search by reference using the CVE Reference Maps.
For More Information:  CVE Request Web Form (select “Other” from dropdown)