Search Results

There are 11 CVE Records that match your search.
Name Description
CVE-2025-44021 OpenStack Ironic before 29.0.1 can write unintended files to a target node disk during image handling (if a deployment was performed via the API). A malicious project assigned as a node owner can provide a path to any local file (readable by ironic-conductor), which may then be written to the target node disk. This is difficult to exploit in practice, because a node deployed in this manner should never reach the ACTIVE state, but it still represents a danger in environments running with non-default, insecure configurations such as with automated cleaning disabled. The fixed versions are 24.1.3, 26.1.1, and 29.0.1.
CVE-2025-22003 In the Linux kernel, the following vulnerability has been resolved: can: ucan: fix out of bound read in strscpy() source Commit 7fdaf8966aae ("can: ucan: use strscpy() to instead of strncpy()") unintentionally introduced a one byte out of bound read on strscpy()'s source argument (which is kind of ironic knowing that strscpy() is meant to be a more secure alternative :)). Let's consider below buffers: dest[len + 1]; /* will be NUL terminated */ src[len]; /* may not be NUL terminated */ When doing: strncpy(dest, src, len); dest[len] = '\0'; strncpy() will read up to len bytes from src. On the other hand: strscpy(dest, src, len + 1); will read up to len + 1 bytes from src, that is to say, an out of bound read of one byte will occur on src if it is not NUL terminated. Note that the src[len] byte is never copied, but strscpy() still needs to read it to check whether a truncation occurred or not. This exact pattern happened in ucan. The root cause is that the source is not NUL terminated. Instead of doing a copy in a local buffer, directly NUL terminate it as soon as usb_control_msg() returns. With this, the local firmware_str[] variable can be removed. On top of this do a couple refactors: - ucan_ctl_payload->raw is only used for the firmware string, so rename it to ucan_ctl_payload->fw_str and change its type from u8 to char. - ucan_device_request_in() is only used to retrieve the firmware string, so rename it to ucan_get_fw_str() and refactor it to make it directly handle all the string termination logic.
CVE-2024-47211 In OpenStack Ironic before 21.4.4, 22.x and 23.x before 23.0.3, 23.x and 24.x before 24.1.3, and 25.x and 26.x before 26.1.0, there is a lack of checksum validation of supplied image_source URLs when configured to convert images to a raw format for streaming.
CVE-2024-44082 In OpenStack Ironic before 26.0.1 and ironic-python-agent before 9.13.1, there is a vulnerability in image processing, in which a crafted image could be used by an authenticated user to exploit undesired behaviors in qemu-img, including possible unauthorized access to potentially sensitive data. The affected/fixed version details are: Ironic: <21.4.3, >=22.0.0 <23.0.2, >=23.1.0 <24.1.2, >=25.0.0 <26.0.1; Ironic-python-agent: <9.4.2, >=9.5.0 <9.7.1, >=9.8.0 <9.11.1, >=9.12.0 <9.13.1.
CVE-2024-31463 Ironic-image is an OpenStack Ironic deployment packaged and configured by Metal3. When the reverse proxy mode is enabled by the `IRONIC_REVERSE_PROXY_SETUP` variable set to `true`, 1) HTTP basic credentials are validated on the HTTPD side in a separate container, not in the Ironic service itself and 2) Ironic listens in host network on a private port 6388 on localhost by default. As a result, when the reverse proxy mode is used, any Pod or local Unix user on the control plane Node can access the Ironic API on the private port without authentication. A similar problem affects Ironic Inspector (`INSPECTOR_REVERSE_PROXY_SETUP` set to `true`), although the attack potential is smaller there. This issue affects operators deploying ironic-image in the reverse proxy mode, which is the recommended mode when TLS is used (also recommended), with the `IRONIC_PRIVATE_PORT` variable unset or set to a numeric value. In this case, an attacker with enough privileges to launch a pod on the control plane with host networking can access Ironic API and use it to modify bare-metal machine, e.g. provision them with a new image or change their BIOS settings. This vulnerability is fixed in 24.1.1.
CVE-2023-40585 ironic-image is a container image to run OpenStack Ironic as part of Metal³. Prior to version capm3-v1.4.3, if Ironic is not deployed with TLS and it does not have API and Conductor split into separate services, access to the API is not protected by any authentication. Ironic API is also listening in host network. In case the node is not behind a firewall, the API could be accessed by anyone via network without authentication. By default, Ironic API in Metal3 is protected by TLS and basic authentication, so this vulnerability requires operator to configure API without TLS for it to be vulnerable. TLS and authentication however should not be coupled as they are in versions prior to capm3-v1.4.3. A patch exists in versions capm3-v1.4.3 and newer. Some workarounds are available. Either configure TLS for Ironic API (`deploy.sh -t ...`, `IRONIC_TLS_SETUP=true`) or split Ironic API and Conductor via configuration change (old implementation, not recommended). With both workarounds, services are configured with httpd front-end, which has proper authentication configuration in place.
CVE-2023-30841 Baremetal Operator (BMO) is a bare metal host provisioning integration for Kubernetes. Prior to version 0.3.0, ironic and ironic-inspector deployed within Baremetal Operator using the included `deploy.sh` store their `.htpasswd` files as ConfigMaps instead of Secrets. This causes the plain-text username and hashed password to be readable by anyone having a cluster-wide read-access to the management cluster, or access to the management cluster's Etcd storage. This issue is patched in baremetal-operator PR#1241, and is included in BMO release 0.3.0 onwards. As a workaround, users may modify the kustomizations and redeploy the BMO, or recreate the required ConfigMaps as Secrets per instructions in baremetal-operator PR#1241.
CVE-2019-10141 A vulnerability was found in openstack-ironic-inspector all versions excluding 5.0.2, 6.0.3, 7.2.4, 8.0.3 and 8.2.1. A SQL-injection vulnerability was found in openstack-ironic-inspector's node_cache.find_node(). This function makes a SQL query using unfiltered data from a server reporting inspection results (by a POST to the /v1/continue endpoint). Because the API is unauthenticated, the flaw could be exploited by an attacker with access to the network on which ironic-inspector is listening. Because of how ironic-inspector uses the query results, it is unlikely that data could be obtained. However, the attacker could pass malicious data and create a denial of service.
CVE-2016-4985 The ironic-api service in OpenStack Ironic before 4.2.5 (Liberty) and 5.x before 5.1.2 (Mitaka) allows remote attackers to obtain sensitive information about a registered node by leveraging knowledge of the MAC address of a network card belonging to that node and sending a crafted POST request to the v1/drivers/$DRIVER_NAME/vendor_passthru resource.
CVE-2015-7514 OpenStack Ironic 4.2.0 through 4.2.1 does not "clean" the disk after use, which allows remote authenticated users to obtain sensitive information.
CVE-2015-5306 OpenStack Ironic Inspector (aka ironic-inspector or ironic-discoverd), when debug mode is enabled, might allow remote attackers to access the Flask console and execute arbitrary Python code by triggering an error.
  
You can also search by reference using the CVE Reference Maps.
For More Information:  CVE Request Web Form (select “Other” from dropdown)