Search Results

There are 3237 CVE Records that match your search.
Name Description
CVE-2024-3744 A security issue was discovered in azure-file-csi-driver where an actor with access to the driver logs could observe service account tokens. These tokens could then potentially be exchanged with external cloud providers to access secrets stored in cloud vault solutions. Tokens are only logged when TokenRequests is configured in the CSIDriver object and the driver is set to run at log level 2 or greater via the -v flag.
CVE-2024-36114 Aircompressor is a library with ports of the Snappy, LZO, LZ4, and Zstandard compression algorithms to Java. All decompressor implementations of Aircompressor (LZ4, LZO, Snappy, Zstandard) can crash the JVM for certain input, and in some cases also leak the content of other memory of the Java process (which could contain sensitive information). When decompressing certain data, the decompressors try to access memory outside the bounds of the given byte arrays or byte buffers. Because Aircompressor uses the JDK class `sun.misc.Unsafe` to speed up memory access, no additional bounds checks are performed and this has similar security consequences as out-of-bounds access in C or C++, namely it can lead to non-deterministic behavior or crash the JVM. Users should update to Aircompressor 0.27 or newer where these issues have been fixed. When decompressing data from untrusted users, this can be exploited for a denial-of-service attack by crashing the JVM, or to leak other sensitive information from the Java process. There are no known workarounds for this issue.
CVE-2024-36016 In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: fix possible out-of-bounds in gsm0_receive() Assuming the following: - side A configures the n_gsm in basic option mode - side B sends the header of a basic option mode frame with data length 1 - side A switches to advanced option mode - side B sends 2 data bytes which exceeds gsm->len Reason: gsm->len is not used in advanced option mode. - side A switches to basic option mode - side B keeps sending until gsm0_receive() writes past gsm->buf Reason: Neither gsm->state nor gsm->len have been reset after reconfiguration. Fix this by changing gsm->count to gsm->len comparison from equal to less than. Also add upper limit checks against the constant MAX_MRU in gsm0_receive() and gsm1_receive() to harden against memory corruption of gsm->len and gsm->mru. All other checks remain as we still need to limit the data according to the user configuration and actual payload size.
CVE-2024-36015 In the Linux kernel, the following vulnerability has been resolved: ppdev: Add an error check in register_device In register_device, the return value of ida_simple_get is unchecked, in witch ida_simple_get will use an invalid index value. To address this issue, index should be checked after ida_simple_get. When the index value is abnormal, a warning message should be printed, the port should be dropped, and the value should be recorded.
CVE-2024-36014 In the Linux kernel, the following vulnerability has been resolved: drm/arm/malidp: fix a possible null pointer dereference In malidp_mw_connector_reset, new memory is allocated with kzalloc, but no check is performed. In order to prevent null pointer dereferencing, ensure that mw_state is checked before calling __drm_atomic_helper_connector_reset.
CVE-2024-36013 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix slab-use-after-free in l2cap_connect() Extend a critical section to prevent chan from early freeing. Also make the l2cap_connect() return type void. Nothing is using the returned value but it is ugly to return a potentially freed pointer. Making it void will help with backports because earlier kernels did use the return value. Now the compile will break for kernels where this patch is not a complete fix. Call stack summary: [use] l2cap_bredr_sig_cmd l2cap_connect &#9484; mutex_lock(&conn->chan_lock); &#9474; chan = pchan->ops->new_connection(pchan); <- alloc chan &#9474; __l2cap_chan_add(conn, chan); &#9474; l2cap_chan_hold(chan); &#9474; list_add(&chan->list, &conn->chan_l); ... (1) &#9492; mutex_unlock(&conn->chan_lock); chan->conf_state ... (4) <- use after free [free] l2cap_conn_del &#9484; mutex_lock(&conn->chan_lock); &#9474; foreach chan in conn->chan_l: ... (2) &#9474; l2cap_chan_put(chan); &#9474; l2cap_chan_destroy &#9474; kfree(chan) ... (3) <- chan freed &#9492; mutex_unlock(&conn->chan_lock); ================================================================== BUG: KASAN: slab-use-after-free in instrument_atomic_read include/linux/instrumented.h:68 [inline] BUG: KASAN: slab-use-after-free in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] BUG: KASAN: slab-use-after-free in l2cap_connect+0xa67/0x11a0 net/bluetooth/l2cap_core.c:4260 Read of size 8 at addr ffff88810bf040a0 by task kworker/u3:1/311
CVE-2024-36012 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: msft: fix slab-use-after-free in msft_do_close() Tying the msft->data lifetime to hdev by freeing it in hci_release_dev() to fix the following case: [use] msft_do_close() msft = hdev->msft_data; if (!msft) ...(1) <- passed. return; mutex_lock(&msft->filter_lock); ...(4) <- used after freed. [free] msft_unregister() msft = hdev->msft_data; hdev->msft_data = NULL; ...(2) kfree(msft); ...(3) <- msft is freed. ================================================================== BUG: KASAN: slab-use-after-free in __mutex_lock_common kernel/locking/mutex.c:587 [inline] BUG: KASAN: slab-use-after-free in __mutex_lock+0x8f/0xc30 kernel/locking/mutex.c:752 Read of size 8 at addr ffff888106cbbca8 by task kworker/u5:2/309
CVE-2024-36011 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: HCI: Fix potential null-ptr-deref Fix potential null-ptr-deref in hci_le_big_sync_established_evt().
CVE-2024-36010 In the Linux kernel, the following vulnerability has been resolved: igb: Fix string truncation warnings in igb_set_fw_version Commit 1978d3ead82c ("intel: fix string truncation warnings") fixes '-Wformat-truncation=' warnings in igb_main.c by using kasprintf. drivers/net/ethernet/intel/igb/igb_main.c:3092:53: warning&#65306;&#8216;%d&#8217; directive output may be truncated writing between 1 and 5 bytes into a region of size between 1 and 13 [-Wformat-truncation=] 3092 | "%d.%d, 0x%08x, %d.%d.%d", | ^~ drivers/net/ethernet/intel/igb/igb_main.c:3092:34: note&#65306;directive argument in the range [0, 65535] 3092 | "%d.%d, 0x%08x, %d.%d.%d", | ^~~~~~~~~~~~~~~~~~~~~~~~~ drivers/net/ethernet/intel/igb/igb_main.c:3092:34: note&#65306;directive argument in the range [0, 65535] drivers/net/ethernet/intel/igb/igb_main.c:3090:25: note&#65306;&#8216;snprintf&#8217; output between 23 and 43 bytes into a destination of size 32 kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Fix this warning by using a larger space for adapter->fw_version, and then fall back and continue to use snprintf.
CVE-2024-36009 In the Linux kernel, the following vulnerability has been resolved: ax25: Fix netdev refcount issue The dev_tracker is added to ax25_cb in ax25_bind(). When the ax25 device is detaching, the dev_tracker of ax25_cb should be deallocated in ax25_kill_by_device() instead of the dev_tracker of ax25_dev. The log reported by ref_tracker is shown below: [ 80.884935] ref_tracker: reference already released. [ 80.885150] ref_tracker: allocated in: [ 80.885349] ax25_dev_device_up+0x105/0x540 [ 80.885730] ax25_device_event+0xa4/0x420 [ 80.885730] notifier_call_chain+0xc9/0x1e0 [ 80.885730] __dev_notify_flags+0x138/0x280 [ 80.885730] dev_change_flags+0xd7/0x180 [ 80.885730] dev_ifsioc+0x6a9/0xa30 [ 80.885730] dev_ioctl+0x4d8/0xd90 [ 80.885730] sock_do_ioctl+0x1c2/0x2d0 [ 80.885730] sock_ioctl+0x38b/0x4f0 [ 80.885730] __se_sys_ioctl+0xad/0xf0 [ 80.885730] do_syscall_64+0xc4/0x1b0 [ 80.885730] entry_SYSCALL_64_after_hwframe+0x67/0x6f [ 80.885730] ref_tracker: freed in: [ 80.885730] ax25_device_event+0x272/0x420 [ 80.885730] notifier_call_chain+0xc9/0x1e0 [ 80.885730] dev_close_many+0x272/0x370 [ 80.885730] unregister_netdevice_many_notify+0x3b5/0x1180 [ 80.885730] unregister_netdev+0xcf/0x120 [ 80.885730] sixpack_close+0x11f/0x1b0 [ 80.885730] tty_ldisc_kill+0xcb/0x190 [ 80.885730] tty_ldisc_hangup+0x338/0x3d0 [ 80.885730] __tty_hangup+0x504/0x740 [ 80.885730] tty_release+0x46e/0xd80 [ 80.885730] __fput+0x37f/0x770 [ 80.885730] __x64_sys_close+0x7b/0xb0 [ 80.885730] do_syscall_64+0xc4/0x1b0 [ 80.885730] entry_SYSCALL_64_after_hwframe+0x67/0x6f [ 80.893739] ------------[ cut here ]------------ [ 80.894030] WARNING: CPU: 2 PID: 140 at lib/ref_tracker.c:255 ref_tracker_free+0x47b/0x6b0 [ 80.894297] Modules linked in: [ 80.894929] CPU: 2 PID: 140 Comm: ax25_conn_rel_6 Not tainted 6.9.0-rc4-g8cd26fd90c1a #11 [ 80.895190] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qem4 [ 80.895514] RIP: 0010:ref_tracker_free+0x47b/0x6b0 [ 80.895808] Code: 83 c5 18 4c 89 eb 48 c1 eb 03 8a 04 13 84 c0 0f 85 df 01 00 00 41 83 7d 00 00 75 4b 4c 89 ff 9 [ 80.896171] RSP: 0018:ffff888009edf8c0 EFLAGS: 00000286 [ 80.896339] RAX: 1ffff1100141ac00 RBX: 1ffff1100149463b RCX: dffffc0000000000 [ 80.896502] RDX: 0000000000000001 RSI: 0000000000000246 RDI: ffff88800a0d6518 [ 80.896925] RBP: ffff888009edf9b0 R08: ffff88806d3288d3 R09: 1ffff1100da6511a [ 80.897212] R10: dffffc0000000000 R11: ffffed100da6511b R12: ffff88800a4a31d4 [ 80.897859] R13: ffff88800a4a31d8 R14: dffffc0000000000 R15: ffff88800a0d6518 [ 80.898279] FS: 00007fd88b7fe700(0000) GS:ffff88806d300000(0000) knlGS:0000000000000000 [ 80.899436] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 80.900181] CR2: 00007fd88c001d48 CR3: 000000000993e000 CR4: 00000000000006f0 ... [ 80.935774] ref_tracker: sp%d@000000000bb9df3d has 1/1 users at [ 80.935774] ax25_bind+0x424/0x4e0 [ 80.935774] __sys_bind+0x1d9/0x270 [ 80.935774] __x64_sys_bind+0x75/0x80 [ 80.935774] do_syscall_64+0xc4/0x1b0 [ 80.935774] entry_SYSCALL_64_after_hwframe+0x67/0x6f Change ax25_dev->dev_tracker to the dev_tracker of ax25_cb in order to mitigate the bug.
CVE-2024-36008 In the Linux kernel, the following vulnerability has been resolved: ipv4: check for NULL idev in ip_route_use_hint() syzbot was able to trigger a NULL deref in fib_validate_source() in an old tree [1]. It appears the bug exists in latest trees. All calls to __in_dev_get_rcu() must be checked for a NULL result. [1] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 2 PID: 3257 Comm: syz-executor.3 Not tainted 5.10.0-syzkaller #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:fib_validate_source+0xbf/0x15a0 net/ipv4/fib_frontend.c:425 Code: 18 f2 f2 f2 f2 42 c7 44 20 23 f3 f3 f3 f3 48 89 44 24 78 42 c6 44 20 27 f3 e8 5d 88 48 fc 4c 89 e8 48 c1 e8 03 48 89 44 24 18 <42> 80 3c 20 00 74 08 4c 89 ef e8 d2 15 98 fc 48 89 5c 24 10 41 bf RSP: 0018:ffffc900015fee40 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88800f7a4000 RCX: ffff88800f4f90c0 RDX: 0000000000000000 RSI: 0000000004001eac RDI: ffff8880160c64c0 RBP: ffffc900015ff060 R08: 0000000000000000 R09: ffff88800f7a4000 R10: 0000000000000002 R11: ffff88800f4f90c0 R12: dffffc0000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88800f7a4000 FS: 00007f938acfe6c0(0000) GS:ffff888058c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f938acddd58 CR3: 000000001248e000 CR4: 0000000000352ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ip_route_use_hint+0x410/0x9b0 net/ipv4/route.c:2231 ip_rcv_finish_core+0x2c4/0x1a30 net/ipv4/ip_input.c:327 ip_list_rcv_finish net/ipv4/ip_input.c:612 [inline] ip_sublist_rcv+0x3ed/0xe50 net/ipv4/ip_input.c:638 ip_list_rcv+0x422/0x470 net/ipv4/ip_input.c:673 __netif_receive_skb_list_ptype net/core/dev.c:5572 [inline] __netif_receive_skb_list_core+0x6b1/0x890 net/core/dev.c:5620 __netif_receive_skb_list net/core/dev.c:5672 [inline] netif_receive_skb_list_internal+0x9f9/0xdc0 net/core/dev.c:5764 netif_receive_skb_list+0x55/0x3e0 net/core/dev.c:5816 xdp_recv_frames net/bpf/test_run.c:257 [inline] xdp_test_run_batch net/bpf/test_run.c:335 [inline] bpf_test_run_xdp_live+0x1818/0x1d00 net/bpf/test_run.c:363 bpf_prog_test_run_xdp+0x81f/0x1170 net/bpf/test_run.c:1376 bpf_prog_test_run+0x349/0x3c0 kernel/bpf/syscall.c:3736 __sys_bpf+0x45c/0x710 kernel/bpf/syscall.c:5115 __do_sys_bpf kernel/bpf/syscall.c:5201 [inline] __se_sys_bpf kernel/bpf/syscall.c:5199 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5199
CVE-2024-36007 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix warning during rehash As previously explained, the rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. When the work runs out of credits it stores the current chunk and entry as markers in the per-work context so that it would know where to resume the migration from the next time the work is scheduled. Upon error, the chunk marker is reset to NULL, but without resetting the entry markers despite being relative to it. This can result in migration being resumed from an entry that does not belong to the chunk being migrated. In turn, this will eventually lead to a chunk being iterated over as if it is an entry. Because of how the two structures happen to be defined, this does not lead to KASAN splats, but to warnings such as [1]. Fix by creating a helper that resets all the markers and call it from all the places the currently only reset the chunk marker. For good measures also call it when starting a completely new rehash. Add a warning to avoid future cases. [1] WARNING: CPU: 7 PID: 1076 at drivers/net/ethernet/mellanox/mlxsw/core_acl_flex_keys.c:407 mlxsw_afk_encode+0x242/0x2f0 Modules linked in: CPU: 7 PID: 1076 Comm: kworker/7:24 Tainted: G W 6.9.0-rc3-custom-00880-g29e61d91b77b #29 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:mlxsw_afk_encode+0x242/0x2f0 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_entry_add+0xd9/0x3c0 mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x109/0x290 mlxsw_sp_acl_tcam_vregion_rehash_work+0x6c/0x470 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 </TASK>
CVE-2024-36006 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix incorrect list API usage Both the function that migrates all the chunks within a region and the function that migrates all the entries within a chunk call list_first_entry() on the respective lists without checking that the lists are not empty. This is incorrect usage of the API, which leads to the following warning [1]. Fix by returning if the lists are empty as there is nothing to migrate in this case. [1] WARNING: CPU: 0 PID: 6437 at drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c:1266 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0> Modules linked in: CPU: 0 PID: 6437 Comm: kworker/0:37 Not tainted 6.9.0-rc3-custom-00883-g94a65f079ef6 #39 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0x2c0 [...] Call Trace: <TASK> mlxsw_sp_acl_tcam_vregion_rehash_work+0x6c/0x4a0 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK>
CVE-2024-36005 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: honor table dormant flag from netdev release event path Check for table dormant flag otherwise netdev release event path tries to unregister an already unregistered hook. [524854.857999] ------------[ cut here ]------------ [524854.858010] WARNING: CPU: 0 PID: 3386599 at net/netfilter/core.c:501 __nf_unregister_net_hook+0x21a/0x260 [...] [524854.858848] CPU: 0 PID: 3386599 Comm: kworker/u32:2 Not tainted 6.9.0-rc3+ #365 [524854.858869] Workqueue: netns cleanup_net [524854.858886] RIP: 0010:__nf_unregister_net_hook+0x21a/0x260 [524854.858903] Code: 24 e8 aa 73 83 ff 48 63 43 1c 83 f8 01 0f 85 3d ff ff ff e8 98 d1 f0 ff 48 8b 3c 24 e8 8f 73 83 ff 48 63 43 1c e9 26 ff ff ff <0f> 0b 48 83 c4 18 48 c7 c7 00 68 e9 82 5b 5d 41 5c 41 5d 41 5e 41 [524854.858914] RSP: 0018:ffff8881e36d79e0 EFLAGS: 00010246 [524854.858926] RAX: 0000000000000000 RBX: ffff8881339ae790 RCX: ffffffff81ba524a [524854.858936] RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff8881c8a16438 [524854.858945] RBP: ffff8881c8a16438 R08: 0000000000000001 R09: ffffed103c6daf34 [524854.858954] R10: ffff8881e36d79a7 R11: 0000000000000000 R12: 0000000000000005 [524854.858962] R13: ffff8881c8a16000 R14: 0000000000000000 R15: ffff8881351b5a00 [524854.858971] FS: 0000000000000000(0000) GS:ffff888390800000(0000) knlGS:0000000000000000 [524854.858982] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [524854.858991] CR2: 00007fc9be0f16f4 CR3: 00000001437cc004 CR4: 00000000001706f0 [524854.859000] Call Trace: [524854.859006] <TASK> [524854.859013] ? __warn+0x9f/0x1a0 [524854.859027] ? __nf_unregister_net_hook+0x21a/0x260 [524854.859044] ? report_bug+0x1b1/0x1e0 [524854.859060] ? handle_bug+0x3c/0x70 [524854.859071] ? exc_invalid_op+0x17/0x40 [524854.859083] ? asm_exc_invalid_op+0x1a/0x20 [524854.859100] ? __nf_unregister_net_hook+0x6a/0x260 [524854.859116] ? __nf_unregister_net_hook+0x21a/0x260 [524854.859135] nf_tables_netdev_event+0x337/0x390 [nf_tables] [524854.859304] ? __pfx_nf_tables_netdev_event+0x10/0x10 [nf_tables] [524854.859461] ? packet_notifier+0xb3/0x360 [524854.859476] ? _raw_spin_unlock_irqrestore+0x11/0x40 [524854.859489] ? dcbnl_netdevice_event+0x35/0x140 [524854.859507] ? __pfx_nf_tables_netdev_event+0x10/0x10 [nf_tables] [524854.859661] notifier_call_chain+0x7d/0x140 [524854.859677] unregister_netdevice_many_notify+0x5e1/0xae0
CVE-2024-36004 In the Linux kernel, the following vulnerability has been resolved: i40e: Do not use WQ_MEM_RECLAIM flag for workqueue Issue reported by customer during SRIOV testing, call trace: When both i40e and the i40iw driver are loaded, a warning in check_flush_dependency is being triggered. This seems to be because of the i40e driver workqueue is allocated with the WQ_MEM_RECLAIM flag, and the i40iw one is not. Similar error was encountered on ice too and it was fixed by removing the flag. Do the same for i40e too. [Feb 9 09:08] ------------[ cut here ]------------ [ +0.000004] workqueue: WQ_MEM_RECLAIM i40e:i40e_service_task [i40e] is flushing !WQ_MEM_RECLAIM infiniband:0x0 [ +0.000060] WARNING: CPU: 0 PID: 937 at kernel/workqueue.c:2966 check_flush_dependency+0x10b/0x120 [ +0.000007] Modules linked in: snd_seq_dummy snd_hrtimer snd_seq snd_timer snd_seq_device snd soundcore nls_utf8 cifs cifs_arc4 nls_ucs2_utils rdma_cm iw_cm ib_cm cifs_md4 dns_resolver netfs qrtr rfkill sunrpc vfat fat intel_rapl_msr intel_rapl_common irdma intel_uncore_frequency intel_uncore_frequency_common ice ipmi_ssif isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp gnss coretemp ib_uverbs rapl intel_cstate ib_core iTCO_wdt iTCO_vendor_support acpi_ipmi mei_me ipmi_si intel_uncore ioatdma i2c_i801 joydev pcspkr mei ipmi_devintf lpc_ich intel_pch_thermal i2c_smbus ipmi_msghandler acpi_power_meter acpi_pad xfs libcrc32c ast sd_mod drm_shmem_helper t10_pi drm_kms_helper sg ixgbe drm i40e ahci crct10dif_pclmul libahci crc32_pclmul igb crc32c_intel libata ghash_clmulni_intel i2c_algo_bit mdio dca wmi dm_mirror dm_region_hash dm_log dm_mod fuse [ +0.000050] CPU: 0 PID: 937 Comm: kworker/0:3 Kdump: loaded Not tainted 6.8.0-rc2-Feb-net_dev-Qiueue-00279-gbd43c5687e05 #1 [ +0.000003] Hardware name: Intel Corporation S2600BPB/S2600BPB, BIOS SE5C620.86B.02.01.0013.121520200651 12/15/2020 [ +0.000001] Workqueue: i40e i40e_service_task [i40e] [ +0.000024] RIP: 0010:check_flush_dependency+0x10b/0x120 [ +0.000003] Code: ff 49 8b 54 24 18 48 8d 8b b0 00 00 00 49 89 e8 48 81 c6 b0 00 00 00 48 c7 c7 b0 97 fa 9f c6 05 8a cc 1f 02 01 e8 35 b3 fd ff <0f> 0b e9 10 ff ff ff 80 3d 78 cc 1f 02 00 75 94 e9 46 ff ff ff 90 [ +0.000002] RSP: 0018:ffffbd294976bcf8 EFLAGS: 00010282 [ +0.000002] RAX: 0000000000000000 RBX: ffff94d4c483c000 RCX: 0000000000000027 [ +0.000001] RDX: ffff94d47f620bc8 RSI: 0000000000000001 RDI: ffff94d47f620bc0 [ +0.000001] RBP: 0000000000000000 R08: 0000000000000000 R09: 00000000ffff7fff [ +0.000001] R10: ffffbd294976bb98 R11: ffffffffa0be65e8 R12: ffff94c5451ea180 [ +0.000001] R13: ffff94c5ab5e8000 R14: ffff94c5c20b6e05 R15: ffff94c5f1330ab0 [ +0.000001] FS: 0000000000000000(0000) GS:ffff94d47f600000(0000) knlGS:0000000000000000 [ +0.000002] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000001] CR2: 00007f9e6f1fca70 CR3: 0000000038e20004 CR4: 00000000007706f0 [ +0.000000] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ +0.000001] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ +0.000001] PKRU: 55555554 [ +0.000001] Call Trace: [ +0.000001] <TASK> [ +0.000002] ? __warn+0x80/0x130 [ +0.000003] ? check_flush_dependency+0x10b/0x120 [ +0.000002] ? report_bug+0x195/0x1a0 [ +0.000005] ? handle_bug+0x3c/0x70 [ +0.000003] ? exc_invalid_op+0x14/0x70 [ +0.000002] ? asm_exc_invalid_op+0x16/0x20 [ +0.000006] ? check_flush_dependency+0x10b/0x120 [ +0.000002] ? check_flush_dependency+0x10b/0x120 [ +0.000002] __flush_workqueue+0x126/0x3f0 [ +0.000015] ib_cache_cleanup_one+0x1c/0xe0 [ib_core] [ +0.000056] __ib_unregister_device+0x6a/0xb0 [ib_core] [ +0.000023] ib_unregister_device_and_put+0x34/0x50 [ib_core] [ +0.000020] i40iw_close+0x4b/0x90 [irdma] [ +0.000022] i40e_notify_client_of_netdev_close+0x54/0xc0 [i40e] [ +0.000035] i40e_service_task+0x126/0x190 [i40e] [ +0.000024] process_one_work+0x174/0x340 [ +0.000003] worker_th ---truncated---
CVE-2024-36003 In the Linux kernel, the following vulnerability has been resolved: ice: fix LAG and VF lock dependency in ice_reset_vf() 9f74a3dfcf83 ("ice: Fix VF Reset paths when interface in a failed over aggregate"), the ice driver has acquired the LAG mutex in ice_reset_vf(). The commit placed this lock acquisition just prior to the acquisition of the VF configuration lock. If ice_reset_vf() acquires the configuration lock via the ICE_VF_RESET_LOCK flag, this could deadlock with ice_vc_cfg_qs_msg() because it always acquires the locks in the order of the VF configuration lock and then the LAG mutex. Lockdep reports this violation almost immediately on creating and then removing 2 VF: ====================================================== WARNING: possible circular locking dependency detected 6.8.0-rc6 #54 Tainted: G W O ------------------------------------------------------ kworker/60:3/6771 is trying to acquire lock: ff40d43e099380a0 (&vf->cfg_lock){+.+.}-{3:3}, at: ice_reset_vf+0x22f/0x4d0 [ice] but task is already holding lock: ff40d43ea1961210 (&pf->lag_mutex){+.+.}-{3:3}, at: ice_reset_vf+0xb7/0x4d0 [ice] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&pf->lag_mutex){+.+.}-{3:3}: __lock_acquire+0x4f8/0xb40 lock_acquire+0xd4/0x2d0 __mutex_lock+0x9b/0xbf0 ice_vc_cfg_qs_msg+0x45/0x690 [ice] ice_vc_process_vf_msg+0x4f5/0x870 [ice] __ice_clean_ctrlq+0x2b5/0x600 [ice] ice_service_task+0x2c9/0x480 [ice] process_one_work+0x1e9/0x4d0 worker_thread+0x1e1/0x3d0 kthread+0x104/0x140 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1b/0x30 -> #0 (&vf->cfg_lock){+.+.}-{3:3}: check_prev_add+0xe2/0xc50 validate_chain+0x558/0x800 __lock_acquire+0x4f8/0xb40 lock_acquire+0xd4/0x2d0 __mutex_lock+0x9b/0xbf0 ice_reset_vf+0x22f/0x4d0 [ice] ice_process_vflr_event+0x98/0xd0 [ice] ice_service_task+0x1cc/0x480 [ice] process_one_work+0x1e9/0x4d0 worker_thread+0x1e1/0x3d0 kthread+0x104/0x140 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1b/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&pf->lag_mutex); lock(&vf->cfg_lock); lock(&pf->lag_mutex); lock(&vf->cfg_lock); *** DEADLOCK *** 4 locks held by kworker/60:3/6771: #0: ff40d43e05428b38 ((wq_completion)ice){+.+.}-{0:0}, at: process_one_work+0x176/0x4d0 #1: ff50d06e05197e58 ((work_completion)(&pf->serv_task)){+.+.}-{0:0}, at: process_one_work+0x176/0x4d0 #2: ff40d43ea1960e50 (&pf->vfs.table_lock){+.+.}-{3:3}, at: ice_process_vflr_event+0x48/0xd0 [ice] #3: ff40d43ea1961210 (&pf->lag_mutex){+.+.}-{3:3}, at: ice_reset_vf+0xb7/0x4d0 [ice] stack backtrace: CPU: 60 PID: 6771 Comm: kworker/60:3 Tainted: G W O 6.8.0-rc6 #54 Hardware name: Workqueue: ice ice_service_task [ice] Call Trace: <TASK> dump_stack_lvl+0x4a/0x80 check_noncircular+0x12d/0x150 check_prev_add+0xe2/0xc50 ? save_trace+0x59/0x230 ? add_chain_cache+0x109/0x450 validate_chain+0x558/0x800 __lock_acquire+0x4f8/0xb40 ? lockdep_hardirqs_on+0x7d/0x100 lock_acquire+0xd4/0x2d0 ? ice_reset_vf+0x22f/0x4d0 [ice] ? lock_is_held_type+0xc7/0x120 __mutex_lock+0x9b/0xbf0 ? ice_reset_vf+0x22f/0x4d0 [ice] ? ice_reset_vf+0x22f/0x4d0 [ice] ? rcu_is_watching+0x11/0x50 ? ice_reset_vf+0x22f/0x4d0 [ice] ice_reset_vf+0x22f/0x4d0 [ice] ? process_one_work+0x176/0x4d0 ice_process_vflr_event+0x98/0xd0 [ice] ice_service_task+0x1cc/0x480 [ice] process_one_work+0x1e9/0x4d0 worker_thread+0x1e1/0x3d0 ? __pfx_worker_thread+0x10/0x10 kthread+0x104/0x140 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> To avoid deadlock, we must acquire the LAG ---truncated---
CVE-2024-36002 In the Linux kernel, the following vulnerability has been resolved: dpll: fix dpll_pin_on_pin_register() for multiple parent pins In scenario where pin is registered with multiple parent pins via dpll_pin_on_pin_register(..), all belonging to the same dpll device. A second call to dpll_pin_on_pin_unregister(..) would cause a call trace, as it tries to use already released registration resources (due to fix introduced in b446631f355e). In this scenario pin was registered twice, so resources are not yet expected to be release until each registered pin/pin pair is unregistered. Currently, the following crash/call trace is produced when ice driver is removed on the system with installed E810T NIC which includes dpll device: WARNING: CPU: 51 PID: 9155 at drivers/dpll/dpll_core.c:809 dpll_pin_ops+0x20/0x30 RIP: 0010:dpll_pin_ops+0x20/0x30 Call Trace: ? __warn+0x7f/0x130 ? dpll_pin_ops+0x20/0x30 dpll_msg_add_pin_freq+0x37/0x1d0 dpll_cmd_pin_get_one+0x1c0/0x400 ? __nlmsg_put+0x63/0x80 dpll_pin_event_send+0x93/0x140 dpll_pin_on_pin_unregister+0x3f/0x100 ice_dpll_deinit_pins+0xa1/0x230 [ice] ice_remove+0xf1/0x210 [ice] Fix by adding a parent pointer as a cookie when creating a registration, also when searching for it. For the regular pins pass NULL, this allows to create separated registration for each parent the pin is registered with.
CVE-2024-36001 In the Linux kernel, the following vulnerability has been resolved: netfs: Fix the pre-flush when appending to a file in writethrough mode In netfs_perform_write(), when the file is marked NETFS_ICTX_WRITETHROUGH or O_*SYNC or RWF_*SYNC was specified, write-through caching is performed on a buffered file. When setting up for write-through, we flush any conflicting writes in the region and wait for the write to complete, failing if there's a write error to return. The issue arises if we're writing at or above the EOF position because we skip the flush and - more importantly - the wait. This becomes a problem if there's a partial folio at the end of the file that is being written out and we want to make a write to it too. Both the already-running write and the write we start both want to clear the writeback mark, but whoever is second causes a warning looking something like: ------------[ cut here ]------------ R=00000012: folio 11 is not under writeback WARNING: CPU: 34 PID: 654 at fs/netfs/write_collect.c:105 ... CPU: 34 PID: 654 Comm: kworker/u386:27 Tainted: G S ... ... Workqueue: events_unbound netfs_write_collection_worker ... RIP: 0010:netfs_writeback_lookup_folio Fix this by making the flush-and-wait unconditional. It will do nothing if there are no folios in the pagecache and will return quickly if there are no folios in the region specified. Further, move the WBC attachment above the flush call as the flush is going to attach a WBC and detach it again if it is not present - and since we need one anyway we might as well share it.
CVE-2024-36000 In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix missing hugetlb_lock for resv uncharge There is a recent report on UFFDIO_COPY over hugetlb: https://lore.kernel.org/all/000000000000ee06de0616177560@google.com/ 350: lockdep_assert_held(&hugetlb_lock); Should be an issue in hugetlb but triggered in an userfault context, where it goes into the unlikely path where two threads modifying the resv map together. Mike has a fix in that path for resv uncharge but it looks like the locking criteria was overlooked: hugetlb_cgroup_uncharge_folio_rsvd() will update the cgroup pointer, so it requires to be called with the lock held.
CVE-2024-35999 In the Linux kernel, the following vulnerability has been resolved: smb3: missing lock when picking channel Coverity spotted a place where we should have been holding the channel lock when accessing the ses channel index. Addresses-Coverity: 1582039 ("Data race condition (MISSING_LOCK)")
CVE-2024-35998 In the Linux kernel, the following vulnerability has been resolved: smb3: fix lock ordering potential deadlock in cifs_sync_mid_result Coverity spotted that the cifs_sync_mid_result function could deadlock "Thread deadlock (ORDER_REVERSAL) lock_order: Calling spin_lock acquires lock TCP_Server_Info.srv_lock while holding lock TCP_Server_Info.mid_lock" Addresses-Coverity: 1590401 ("Thread deadlock (ORDER_REVERSAL)")
CVE-2024-35997 In the Linux kernel, the following vulnerability has been resolved: HID: i2c-hid: remove I2C_HID_READ_PENDING flag to prevent lock-up The flag I2C_HID_READ_PENDING is used to serialize I2C operations. However, this is not necessary, because I2C core already has its own locking for that. More importantly, this flag can cause a lock-up: if the flag is set in i2c_hid_xfer() and an interrupt happens, the interrupt handler (i2c_hid_irq) will check this flag and return immediately without doing anything, then the interrupt handler will be invoked again in an infinite loop. Since interrupt handler is an RT task, it takes over the CPU and the flag-clearing task never gets scheduled, thus we have a lock-up. Delete this unnecessary flag.
CVE-2024-35996 In the Linux kernel, the following vulnerability has been resolved: cpu: Re-enable CPU mitigations by default for !X86 architectures Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it on for all architectures exception x86. A recent commit to turn mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta missed that "cpu_mitigations" is completely generic, whereas SPECULATION_MITIGATIONS is x86-specific. Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it select CPU_MITIGATIONS, as having two configs for the same thing is unnecessary and confusing. This will also allow x86 to use the knob to manage mitigations that aren't strictly related to speculative execution. Use another Kconfig to communicate to common code that CPU_MITIGATIONS is already defined instead of having x86's menu depend on the common CPU_MITIGATIONS. This allows keeping a single point of contact for all of x86's mitigations, and it's not clear that other architectures *want* to allow disabling mitigations at compile-time.
CVE-2024-35995 In the Linux kernel, the following vulnerability has been resolved: ACPI: CPPC: Use access_width over bit_width for system memory accesses To align with ACPI 6.3+, since bit_width can be any 8-bit value, it cannot be depended on to be always on a clean 8b boundary. This was uncovered on the Cobalt 100 platform. SError Interrupt on CPU26, code 0xbe000011 -- SError CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted 5.15.2.1-13 #1 Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION pstate: 62400009 (nZCv daif +PAN -UAO +TCO -DIT -SSBS BTYPE=--) pc : cppc_get_perf_caps+0xec/0x410 lr : cppc_get_perf_caps+0xe8/0x410 sp : ffff8000155ab730 x29: ffff8000155ab730 x28: ffff0080139d0038 x27: ffff0080139d0078 x26: 0000000000000000 x25: ffff0080139d0058 x24: 00000000ffffffff x23: ffff0080139d0298 x22: ffff0080139d0278 x21: 0000000000000000 x20: ffff00802b251910 x19: ffff0080139d0000 x18: ffffffffffffffff x17: 0000000000000000 x16: ffffdc7e111bad04 x15: ffff00802b251008 x14: ffffffffffffffff x13: ffff013f1fd63300 x12: 0000000000000006 x11: ffffdc7e128f4420 x10: 0000000000000000 x9 : ffffdc7e111badec x8 : ffff00802b251980 x7 : 0000000000000000 x6 : ffff0080139d0028 x5 : 0000000000000000 x4 : ffff0080139d0018 x3 : 00000000ffffffff x2 : 0000000000000008 x1 : ffff8000155ab7a0 x0 : 0000000000000000 Kernel panic - not syncing: Asynchronous SError Interrupt CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted 5.15.2.1-13 #1 Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION Call trace: dump_backtrace+0x0/0x1e0 show_stack+0x24/0x30 dump_stack_lvl+0x8c/0xb8 dump_stack+0x18/0x34 panic+0x16c/0x384 add_taint+0x0/0xc0 arm64_serror_panic+0x7c/0x90 arm64_is_fatal_ras_serror+0x34/0xa4 do_serror+0x50/0x6c el1h_64_error_handler+0x40/0x74 el1h_64_error+0x7c/0x80 cppc_get_perf_caps+0xec/0x410 cppc_cpufreq_cpu_init+0x74/0x400 [cppc_cpufreq] cpufreq_online+0x2dc/0xa30 cpufreq_add_dev+0xc0/0xd4 subsys_interface_register+0x134/0x14c cpufreq_register_driver+0x1b0/0x354 cppc_cpufreq_init+0x1a8/0x1000 [cppc_cpufreq] do_one_initcall+0x50/0x250 do_init_module+0x60/0x27c load_module+0x2300/0x2570 __do_sys_finit_module+0xa8/0x114 __arm64_sys_finit_module+0x2c/0x3c invoke_syscall+0x78/0x100 el0_svc_common.constprop.0+0x180/0x1a0 do_el0_svc+0x84/0xa0 el0_svc+0x2c/0xc0 el0t_64_sync_handler+0xa4/0x12c el0t_64_sync+0x1a4/0x1a8 Instead, use access_width to determine the size and use the offset and width to shift and mask the bits to read/write out. Make sure to add a check for system memory since pcc redefines the access_width to subspace id. If access_width is not set, then fall back to using bit_width. [ rjw: Subject and changelog edits, comment adjustments ]
CVE-2024-35994 In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: uefisecapp: Fix memory related IO errors and crashes It turns out that while the QSEECOM APP_SEND command has specific fields for request and response buffers, uefisecapp expects them both to be in a single memory region. Failure to adhere to this has (so far) resulted in either no response being written to the response buffer (causing an EIO to be emitted down the line), the SCM call to fail with EINVAL (i.e., directly from TZ/firmware), or the device to be hard-reset. While this issue can be triggered deterministically, in the current form it seems to happen rather sporadically (which is why it has gone unnoticed during earlier testing). This is likely due to the two kzalloc() calls (for request and response) being directly after each other. Which means that those likely return consecutive regions most of the time, especially when not much else is going on in the system. Fix this by allocating a single memory region for both request and response buffers, properly aligning both structs inside it. This unfortunately also means that the qcom_scm_qseecom_app_send() interface needs to be restructured, as it should no longer map the DMA regions separately. Therefore, move the responsibility of DMA allocation (or mapping) to the caller.
CVE-2024-35993 In the Linux kernel, the following vulnerability has been resolved: mm: turn folio_test_hugetlb into a PageType The current folio_test_hugetlb() can be fooled by a concurrent folio split into returning true for a folio which has never belonged to hugetlbfs. This can't happen if the caller holds a refcount on it, but we have a few places (memory-failure, compaction, procfs) which do not and should not take a speculative reference. Since hugetlb pages do not use individual page mapcounts (they are always fully mapped and use the entire_mapcount field to record the number of mappings), the PageType field is available now that page_mapcount() ignores the value in this field. In compaction and with CONFIG_DEBUG_VM enabled, the current implementation can result in an oops, as reported by Luis. This happens since 9c5ccf2db04b ("mm: remove HUGETLB_PAGE_DTOR") effectively added some VM_BUG_ON() checks in the PageHuge() testing path. [willy@infradead.org: update vmcoreinfo] Link: https://lkml.kernel.org/r/ZgGZUvsdhaT1Va-T@casper.infradead.org
CVE-2024-35992 In the Linux kernel, the following vulnerability has been resolved: phy: marvell: a3700-comphy: Fix out of bounds read There is an out of bounds read access of 'gbe_phy_init_fix[fix_idx].addr' every iteration after 'fix_idx' reaches 'ARRAY_SIZE(gbe_phy_init_fix)'. Make sure 'gbe_phy_init[addr]' is used when all elements of 'gbe_phy_init_fix' array are handled. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-35991 In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Convert spinlock to mutex to lock evl workqueue drain_workqueue() cannot be called safely in a spinlocked context due to possible task rescheduling. In the multi-task scenario, calling queue_work() while drain_workqueue() will lead to a Call Trace as pushing a work on a draining workqueue is not permitted in spinlocked context. Call Trace: <TASK> ? __warn+0x7d/0x140 ? __queue_work+0x2b2/0x440 ? report_bug+0x1f8/0x200 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? __queue_work+0x2b2/0x440 queue_work_on+0x28/0x30 idxd_misc_thread+0x303/0x5a0 [idxd] ? __schedule+0x369/0xb40 ? __pfx_irq_thread_fn+0x10/0x10 ? irq_thread+0xbc/0x1b0 irq_thread_fn+0x21/0x70 irq_thread+0x102/0x1b0 ? preempt_count_add+0x74/0xa0 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0x103/0x140 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> The current implementation uses a spinlock to protect event log workqueue and will lead to the Call Trace due to potential task rescheduling. To address the locking issue, convert the spinlock to mutex, allowing the drain_workqueue() to be called in a safe mutex-locked context. This change ensures proper synchronization when accessing the event log workqueue, preventing potential Call Trace and improving the overall robustness of the code.
CVE-2024-35990 In the Linux kernel, the following vulnerability has been resolved: dma: xilinx_dpdma: Fix locking There are several places where either chan->lock or chan->vchan.lock was not held. Add appropriate locking. This fixes lockdep warnings like [ 31.077578] ------------[ cut here ]------------ [ 31.077831] WARNING: CPU: 2 PID: 40 at drivers/dma/xilinx/xilinx_dpdma.c:834 xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.077953] Modules linked in: [ 31.078019] CPU: 2 PID: 40 Comm: kworker/u12:1 Not tainted 6.6.20+ #98 [ 31.078102] Hardware name: xlnx,zynqmp (DT) [ 31.078169] Workqueue: events_unbound deferred_probe_work_func [ 31.078272] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 31.078377] pc : xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.078473] lr : xilinx_dpdma_chan_queue_transfer+0x270/0x5e0 [ 31.078550] sp : ffffffc083bb2e10 [ 31.078590] x29: ffffffc083bb2e10 x28: 0000000000000000 x27: ffffff880165a168 [ 31.078754] x26: ffffff880164e920 x25: ffffff880164eab8 x24: ffffff880164d480 [ 31.078920] x23: ffffff880165a148 x22: ffffff880164e988 x21: 0000000000000000 [ 31.079132] x20: ffffffc082aa3000 x19: ffffff880164e880 x18: 0000000000000000 [ 31.079295] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [ 31.079453] x14: 0000000000000000 x13: ffffff8802263dc0 x12: 0000000000000001 [ 31.079613] x11: 0001ffc083bb2e34 x10: 0001ff880164e98f x9 : 0001ffc082aa3def [ 31.079824] x8 : 0001ffc082aa3dec x7 : 0000000000000000 x6 : 0000000000000516 [ 31.079982] x5 : ffffffc7f8d43000 x4 : ffffff88003c9c40 x3 : ffffffffffffffff [ 31.080147] x2 : ffffffc7f8d43000 x1 : 00000000000000c0 x0 : 0000000000000000 [ 31.080307] Call trace: [ 31.080340] xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.080518] xilinx_dpdma_issue_pending+0x11c/0x120 [ 31.080595] zynqmp_disp_layer_update+0x180/0x3ac [ 31.080712] zynqmp_dpsub_plane_atomic_update+0x11c/0x21c [ 31.080825] drm_atomic_helper_commit_planes+0x20c/0x684 [ 31.080951] drm_atomic_helper_commit_tail+0x5c/0xb0 [ 31.081139] commit_tail+0x234/0x294 [ 31.081246] drm_atomic_helper_commit+0x1f8/0x210 [ 31.081363] drm_atomic_commit+0x100/0x140 [ 31.081477] drm_client_modeset_commit_atomic+0x318/0x384 [ 31.081634] drm_client_modeset_commit_locked+0x8c/0x24c [ 31.081725] drm_client_modeset_commit+0x34/0x5c [ 31.081812] __drm_fb_helper_restore_fbdev_mode_unlocked+0x104/0x168 [ 31.081899] drm_fb_helper_set_par+0x50/0x70 [ 31.081971] fbcon_init+0x538/0xc48 [ 31.082047] visual_init+0x16c/0x23c [ 31.082207] do_bind_con_driver.isra.0+0x2d0/0x634 [ 31.082320] do_take_over_console+0x24c/0x33c [ 31.082429] do_fbcon_takeover+0xbc/0x1b0 [ 31.082503] fbcon_fb_registered+0x2d0/0x34c [ 31.082663] register_framebuffer+0x27c/0x38c [ 31.082767] __drm_fb_helper_initial_config_and_unlock+0x5c0/0x91c [ 31.082939] drm_fb_helper_initial_config+0x50/0x74 [ 31.083012] drm_fbdev_dma_client_hotplug+0xb8/0x108 [ 31.083115] drm_client_register+0xa0/0xf4 [ 31.083195] drm_fbdev_dma_setup+0xb0/0x1cc [ 31.083293] zynqmp_dpsub_drm_init+0x45c/0x4e0 [ 31.083431] zynqmp_dpsub_probe+0x444/0x5e0 [ 31.083616] platform_probe+0x8c/0x13c [ 31.083713] really_probe+0x258/0x59c [ 31.083793] __driver_probe_device+0xc4/0x224 [ 31.083878] driver_probe_device+0x70/0x1c0 [ 31.083961] __device_attach_driver+0x108/0x1e0 [ 31.084052] bus_for_each_drv+0x9c/0x100 [ 31.084125] __device_attach+0x100/0x298 [ 31.084207] device_initial_probe+0x14/0x20 [ 31.084292] bus_probe_device+0xd8/0xdc [ 31.084368] deferred_probe_work_func+0x11c/0x180 [ 31.084451] process_one_work+0x3ac/0x988 [ 31.084643] worker_thread+0x398/0x694 [ 31.084752] kthread+0x1bc/0x1c0 [ 31.084848] ret_from_fork+0x10/0x20 [ 31.084932] irq event stamp: 64549 [ 31.084970] hardirqs last enabled at (64548): [<ffffffc081adf35c>] _raw_spin_unlock_irqrestore+0x80/0x90 [ 31.085157] ---truncated---
CVE-2024-35989 In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Fix oops during rmmod on single-CPU platforms During the removal of the idxd driver, registered offline callback is invoked as part of the clean up process. However, on systems with only one CPU online, no valid target is available to migrate the perf context, resulting in a kernel oops: BUG: unable to handle page fault for address: 000000000002a2b8 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 1470e1067 P4D 0 Oops: 0002 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 20 Comm: cpuhp/0 Not tainted 6.8.0-rc6-dsa+ #57 Hardware name: Intel Corporation AvenueCity/AvenueCity, BIOS BHSDCRB1.86B.2492.D03.2307181620 07/18/2023 RIP: 0010:mutex_lock+0x2e/0x50 ... Call Trace: <TASK> __die+0x24/0x70 page_fault_oops+0x82/0x160 do_user_addr_fault+0x65/0x6b0 __pfx___rdmsr_safe_on_cpu+0x10/0x10 exc_page_fault+0x7d/0x170 asm_exc_page_fault+0x26/0x30 mutex_lock+0x2e/0x50 mutex_lock+0x1e/0x50 perf_pmu_migrate_context+0x87/0x1f0 perf_event_cpu_offline+0x76/0x90 [idxd] cpuhp_invoke_callback+0xa2/0x4f0 __pfx_perf_event_cpu_offline+0x10/0x10 [idxd] cpuhp_thread_fun+0x98/0x150 smpboot_thread_fn+0x27/0x260 smpboot_thread_fn+0x1af/0x260 __pfx_smpboot_thread_fn+0x10/0x10 kthread+0x103/0x140 __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x50 __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 <TASK> Fix the issue by preventing the migration of the perf context to an invalid target.
CVE-2024-35988 In the Linux kernel, the following vulnerability has been resolved: riscv: Fix TASK_SIZE on 64-bit NOMMU On NOMMU, userspace memory can come from anywhere in physical RAM. The current definition of TASK_SIZE is wrong if any RAM exists above 4G, causing spurious failures in the userspace access routines.
CVE-2024-35987 In the Linux kernel, the following vulnerability has been resolved: riscv: Fix loading 64-bit NOMMU kernels past the start of RAM commit 3335068f8721 ("riscv: Use PUD/P4D/PGD pages for the linear mapping") added logic to allow using RAM below the kernel load address. However, this does not work for NOMMU, where PAGE_OFFSET is fixed to the kernel load address. Since that range of memory corresponds to PFNs below ARCH_PFN_OFFSET, mm initialization runs off the beginning of mem_map and corrupts adjacent kernel memory. Fix this by restoring the previous behavior for NOMMU kernels.
CVE-2024-35986 In the Linux kernel, the following vulnerability has been resolved: phy: ti: tusb1210: Resolve charger-det crash if charger psy is unregistered The power_supply frame-work is not really designed for there to be long living in kernel references to power_supply devices. Specifically unregistering a power_supply while some other code has a reference to it triggers a WARN in power_supply_unregister(): WARN_ON(atomic_dec_return(&psy->use_cnt)); Folllowed by the power_supply still getting removed and the backing data freed anyway, leaving the tusb1210 charger-detect code with a dangling reference, resulting in a crash the next time tusb1210_get_online() is called. Fix this by only holding the reference in tusb1210_get_online() freeing it at the end of the function. Note this still leaves a theoretical race window, but it avoids the issue when manually rmmod-ing the charger chip driver during development.
CVE-2024-35985 In the Linux kernel, the following vulnerability has been resolved: sched/eevdf: Prevent vlag from going out of bounds in reweight_eevdf() It was possible to have pick_eevdf() return NULL, which then causes a NULL-deref. This turned out to be due to entity_eligible() returning falsely negative because of a s64 multiplcation overflow. Specifically, reweight_eevdf() computes the vlag without considering the limit placed upon vlag as update_entity_lag() does, and then the scaling multiplication (remember that weight is 20bit fixed point) can overflow. This then leads to the new vruntime being weird which then causes the above entity_eligible() to go side-ways and claim nothing is eligible. Thus limit the range of vlag accordingly. All this was quite rare, but fatal when it does happen.
CVE-2024-35984 In the Linux kernel, the following vulnerability has been resolved: i2c: smbus: fix NULL function pointer dereference Baruch reported an OOPS when using the designware controller as target only. Target-only modes break the assumption of one transfer function always being available. Fix this by always checking the pointer in __i2c_transfer. [wsa: dropped the simplification in core-smbus to avoid theoretical regressions]
CVE-2024-35983 In the Linux kernel, the following vulnerability has been resolved: bounds: Use the right number of bits for power-of-two CONFIG_NR_CPUS bits_per() rounds up to the next power of two when passed a power of two. This causes crashes on some machines and configurations.
CVE-2024-35982 In the Linux kernel, the following vulnerability has been resolved: batman-adv: Avoid infinite loop trying to resize local TT If the MTU of one of an attached interface becomes too small to transmit the local translation table then it must be resized to fit inside all fragments (when enabled) or a single packet. But if the MTU becomes too low to transmit even the header + the VLAN specific part then the resizing of the local TT will never succeed. This can for example happen when the usable space is 110 bytes and 11 VLANs are on top of batman-adv. In this case, at least 116 byte would be needed. There will just be an endless spam of batman_adv: batadv0: Forced to purge local tt entries to fit new maximum fragment MTU (110) in the log but the function will never finish. Problem here is that the timeout will be halved all the time and will then stagnate at 0 and therefore never be able to reduce the table even more. There are other scenarios possible with a similar result. The number of BATADV_TT_CLIENT_NOPURGE entries in the local TT can for example be too high to fit inside a packet. Such a scenario can therefore happen also with only a single VLAN + 7 non-purgable addresses - requiring at least 120 bytes. While this should be handled proactively when: * interface with too low MTU is added * VLAN is added * non-purgeable local mac is added * MTU of an attached interface is reduced * fragmentation setting gets disabled (which most likely requires dropping attached interfaces) not all of these scenarios can be prevented because batman-adv is only consuming events without the the possibility to prevent these actions (non-purgable MAC address added, MTU of an attached interface is reduced). It is therefore necessary to also make sure that the code is able to handle also the situations when there were already incompatible system configuration are present.
CVE-2024-35981 In the Linux kernel, the following vulnerability has been resolved: virtio_net: Do not send RSS key if it is not supported There is a bug when setting the RSS options in virtio_net that can break the whole machine, getting the kernel into an infinite loop. Running the following command in any QEMU virtual machine with virtionet will reproduce this problem: # ethtool -X eth0 hfunc toeplitz This is how the problem happens: 1) ethtool_set_rxfh() calls virtnet_set_rxfh() 2) virtnet_set_rxfh() calls virtnet_commit_rss_command() 3) virtnet_commit_rss_command() populates 4 entries for the rss scatter-gather 4) Since the command above does not have a key, then the last scatter-gatter entry will be zeroed, since rss_key_size == 0. sg_buf_size = vi->rss_key_size; 5) This buffer is passed to qemu, but qemu is not happy with a buffer with zero length, and do the following in virtqueue_map_desc() (QEMU function): if (!sz) { virtio_error(vdev, "virtio: zero sized buffers are not allowed"); 6) virtio_error() (also QEMU function) set the device as broken vdev->broken = true; 7) Qemu bails out, and do not repond this crazy kernel. 8) The kernel is waiting for the response to come back (function virtnet_send_command()) 9) The kernel is waiting doing the following : while (!virtqueue_get_buf(vi->cvq, &tmp) && !virtqueue_is_broken(vi->cvq)) cpu_relax(); 10) None of the following functions above is true, thus, the kernel loops here forever. Keeping in mind that virtqueue_is_broken() does not look at the qemu `vdev->broken`, so, it never realizes that the vitio is broken at QEMU side. Fix it by not sending RSS commands if the feature is not available in the device.
CVE-2024-35980 In the Linux kernel, the following vulnerability has been resolved: arm64: tlb: Fix TLBI RANGE operand KVM/arm64 relies on TLBI RANGE feature to flush TLBs when the dirty pages are collected by VMM and the page table entries become write protected during live migration. Unfortunately, the operand passed to the TLBI RANGE instruction isn't correctly sorted out due to the commit 117940aa6e5f ("KVM: arm64: Define kvm_tlb_flush_vmid_range()"). It leads to crash on the destination VM after live migration because TLBs aren't flushed completely and some of the dirty pages are missed. For example, I have a VM where 8GB memory is assigned, starting from 0x40000000 (1GB). Note that the host has 4KB as the base page size. In the middile of migration, kvm_tlb_flush_vmid_range() is executed to flush TLBs. It passes MAX_TLBI_RANGE_PAGES as the argument to __kvm_tlb_flush_vmid_range() and __flush_s2_tlb_range_op(). SCALE#3 and NUM#31, corresponding to MAX_TLBI_RANGE_PAGES, isn't supported by __TLBI_RANGE_NUM(). In this specific case, -1 has been returned from __TLBI_RANGE_NUM() for SCALE#3/2/1/0 and rejected by the loop in the __flush_tlb_range_op() until the variable @scale underflows and becomes -9, 0xffff708000040000 is set as the operand. The operand is wrong since it's sorted out by __TLBI_VADDR_RANGE() according to invalid @scale and @num. Fix it by extending __TLBI_RANGE_NUM() to support the combination of SCALE#3 and NUM#31. With the changes, [-1 31] instead of [-1 30] can be returned from the macro, meaning the TLBs for 0x200000 pages in the above example can be flushed in one shoot with SCALE#3 and NUM#31. The macro TLBI_RANGE_MASK is dropped since no one uses it any more. The comments are also adjusted accordingly.
CVE-2024-35979 In the Linux kernel, the following vulnerability has been resolved: raid1: fix use-after-free for original bio in raid1_write_request() r1_bio->bios[] is used to record new bios that will be issued to underlying disks, however, in raid1_write_request(), r1_bio->bios[] will set to the original bio temporarily. Meanwhile, if blocked rdev is set, free_r1bio() will be called causing that all r1_bio->bios[] to be freed: raid1_write_request() r1_bio = alloc_r1bio(mddev, bio); -> r1_bio->bios[] is NULL for (i = 0; i < disks; i++) -> for each rdev in conf // first rdev is normal r1_bio->bios[0] = bio; -> set to original bio // second rdev is blocked if (test_bit(Blocked, &rdev->flags)) break if (blocked_rdev) free_r1bio() put_all_bios() bio_put(r1_bio->bios[0]) -> original bio is freed Test scripts: mdadm -CR /dev/md0 -l1 -n4 /dev/sd[abcd] --assume-clean fio -filename=/dev/md0 -ioengine=libaio -rw=write -bs=4k -numjobs=1 \ -iodepth=128 -name=test -direct=1 echo blocked > /sys/block/md0/md/rd2/state Test result: BUG bio-264 (Not tainted): Object already free ----------------------------------------------------------------------------- Allocated in mempool_alloc_slab+0x24/0x50 age=1 cpu=1 pid=869 kmem_cache_alloc+0x324/0x480 mempool_alloc_slab+0x24/0x50 mempool_alloc+0x6e/0x220 bio_alloc_bioset+0x1af/0x4d0 blkdev_direct_IO+0x164/0x8a0 blkdev_write_iter+0x309/0x440 aio_write+0x139/0x2f0 io_submit_one+0x5ca/0xb70 __do_sys_io_submit+0x86/0x270 __x64_sys_io_submit+0x22/0x30 do_syscall_64+0xb1/0x210 entry_SYSCALL_64_after_hwframe+0x6c/0x74 Freed in mempool_free_slab+0x1f/0x30 age=1 cpu=1 pid=869 kmem_cache_free+0x28c/0x550 mempool_free_slab+0x1f/0x30 mempool_free+0x40/0x100 bio_free+0x59/0x80 bio_put+0xf0/0x220 free_r1bio+0x74/0xb0 raid1_make_request+0xadf/0x1150 md_handle_request+0xc7/0x3b0 md_submit_bio+0x76/0x130 __submit_bio+0xd8/0x1d0 submit_bio_noacct_nocheck+0x1eb/0x5c0 submit_bio_noacct+0x169/0xd40 submit_bio+0xee/0x1d0 blkdev_direct_IO+0x322/0x8a0 blkdev_write_iter+0x309/0x440 aio_write+0x139/0x2f0 Since that bios for underlying disks are not allocated yet, fix this problem by using mempool_free() directly to free the r1_bio.
CVE-2024-35978 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix memory leak in hci_req_sync_complete() In 'hci_req_sync_complete()', always free the previous sync request state before assigning reference to a new one.
CVE-2024-35977 In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_uart: properly fix race condition The cros_ec_uart_probe() function calls devm_serdev_device_open() before it calls serdev_device_set_client_ops(). This can trigger a NULL pointer dereference: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... Call Trace: <TASK> ... ? ttyport_receive_buf A simplified version of crashing code is as follows: static inline size_t serdev_controller_receive_buf(struct serdev_controller *ctrl, const u8 *data, size_t count) { struct serdev_device *serdev = ctrl->serdev; if (!serdev || !serdev->ops->receive_buf) // CRASH! return 0; return serdev->ops->receive_buf(serdev, data, count); } It assumes that if SERPORT_ACTIVE is set and serdev exists, serdev->ops will also exist. This conflicts with the existing cros_ec_uart_probe() logic, as it first calls devm_serdev_device_open() (which sets SERPORT_ACTIVE), and only later sets serdev->ops via serdev_device_set_client_ops(). Commit 01f95d42b8f4 ("platform/chrome: cros_ec_uart: fix race condition") attempted to fix a similar race condition, but while doing so, made the window of error for this race condition to happen much wider. Attempt to fix the race condition again, making sure we fully setup before calling devm_serdev_device_open().
CVE-2024-35976 In the Linux kernel, the following vulnerability has been resolved: xsk: validate user input for XDP_{UMEM|COMPLETION}_FILL_RING syzbot reported an illegal copy in xsk_setsockopt() [1] Make sure to validate setsockopt() @optlen parameter. [1] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420 Read of size 4 at addr ffff888028c6cde3 by task syz-executor.0/7549 CPU: 0 PID: 7549 Comm: syz-executor.0 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] copy_from_sockptr include/linux/sockptr.h:55 [inline] xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420 do_sock_setsockopt+0x3af/0x720 net/socket.c:2311 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6d/0x75 RIP: 0033:0x7fb40587de69 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fb40665a0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00007fb4059abf80 RCX: 00007fb40587de69 RDX: 0000000000000005 RSI: 000000000000011b RDI: 0000000000000006 RBP: 00007fb4058ca47a R08: 0000000000000002 R09: 0000000000000000 R10: 0000000020001980 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fb4059abf80 R15: 00007fff57ee4d08 </TASK> Allocated by task 7549: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:370 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:3966 [inline] __kmalloc+0x233/0x4a0 mm/slub.c:3979 kmalloc include/linux/slab.h:632 [inline] __cgroup_bpf_run_filter_setsockopt+0xd2f/0x1040 kernel/bpf/cgroup.c:1869 do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6d/0x75 The buggy address belongs to the object at ffff888028c6cde0 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 1 bytes to the right of allocated 2-byte region [ffff888028c6cde0, ffff888028c6cde2) The buggy address belongs to the physical page: page:ffffea0000a31b00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888028c6c9c0 pfn:0x28c6c anon flags: 0xfff00000000800(slab|node=0|zone=1|lastcpupid=0x7ff) page_type: 0xffffffff() raw: 00fff00000000800 ffff888014c41280 0000000000000000 dead000000000001 raw: ffff888028c6c9c0 0000000080800057 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112cc0(GFP_USER|__GFP_NOWARN|__GFP_NORETRY), pid 6648, tgid 6644 (syz-executor.0), ts 133906047828, free_ts 133859922223 set_page_owner include/linux/page_owner.h:31 [inline] post_alloc_hook+0x1ea/0x210 mm/page_alloc.c:1533 prep_new_page mm/page_alloc.c: ---truncated---
CVE-2024-35975 In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix transmit scheduler resource leak Inorder to support shaping and scheduling, Upon class creation Netdev driver allocates trasmit schedulers. The previous patch which added support for Round robin scheduling has a bug due to which driver is not freeing transmit schedulers post class deletion. This patch fixes the same.
CVE-2024-35974 In the Linux kernel, the following vulnerability has been resolved: block: fix q->blkg_list corruption during disk rebind Multiple gendisk instances can allocated/added for single request queue in case of disk rebind. blkg may still stay in q->blkg_list when calling blkcg_init_disk() for rebind, then q->blkg_list becomes corrupted. Fix the list corruption issue by: - add blkg_init_queue() to initialize q->blkg_list & q->blkcg_mutex only - move calling blkg_init_queue() into blk_alloc_queue() The list corruption should be started since commit f1c006f1c685 ("blk-cgroup: synchronize pd_free_fn() from blkg_free_workfn() and blkcg_deactivate_policy()") which delays removing blkg from q->blkg_list into blkg_free_workfn().
CVE-2024-35973 In the Linux kernel, the following vulnerability has been resolved: geneve: fix header validation in geneve[6]_xmit_skb syzbot is able to trigger an uninit-value in geneve_xmit() [1] Problem : While most ip tunnel helpers (like ip_tunnel_get_dsfield()) uses skb_protocol(skb, true), pskb_inet_may_pull() is only using skb->protocol. If anything else than ETH_P_IPV6 or ETH_P_IP is found in skb->protocol, pskb_inet_may_pull() does nothing at all. If a vlan tag was provided by the caller (af_packet in the syzbot case), the network header might not point to the correct location, and skb linear part could be smaller than expected. Add skb_vlan_inet_prepare() to perform a complete mac validation. Use this in geneve for the moment, I suspect we need to adopt this more broadly. v4 - Jakub reported v3 broke l2_tos_ttl_inherit.sh selftest - Only call __vlan_get_protocol() for vlan types. v2,v3 - Addressed Sabrina comments on v1 and v2 [1] BUG: KMSAN: uninit-value in geneve_xmit_skb drivers/net/geneve.c:910 [inline] BUG: KMSAN: uninit-value in geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030 geneve_xmit_skb drivers/net/geneve.c:910 [inline] geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030 __netdev_start_xmit include/linux/netdevice.h:4903 [inline] netdev_start_xmit include/linux/netdevice.h:4917 [inline] xmit_one net/core/dev.c:3531 [inline] dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547 __dev_queue_xmit+0x348d/0x52c0 net/core/dev.c:4335 dev_queue_xmit include/linux/netdevice.h:3091 [inline] packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3081 [inline] packet_sendmsg+0x8bb0/0x9ef0 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 __sys_sendto+0x685/0x830 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2199 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 packet_alloc_skb net/packet/af_packet.c:2930 [inline] packet_snd net/packet/af_packet.c:3024 [inline] packet_sendmsg+0x722d/0x9ef0 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 __sys_sendto+0x685/0x830 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2199 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 0 PID: 5033 Comm: syz-executor346 Not tainted 6.9.0-rc1-syzkaller-00005-g928a87efa423 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
CVE-2024-35972 In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix possible memory leak in bnxt_rdma_aux_device_init() If ulp = kzalloc() fails, the allocated edev will leak because it is not properly assigned and the cleanup path will not be able to free it. Fix it by assigning it properly immediately after allocation.
CVE-2024-35971 In the Linux kernel, the following vulnerability has been resolved: net: ks8851: Handle softirqs at the end of IRQ thread to fix hang The ks8851_irq() thread may call ks8851_rx_pkts() in case there are any packets in the MAC FIFO, which calls netif_rx(). This netif_rx() implementation is guarded by local_bh_disable() and local_bh_enable(). The local_bh_enable() may call do_softirq() to run softirqs in case any are pending. One of the softirqs is net_rx_action, which ultimately reaches the driver .start_xmit callback. If that happens, the system hangs. The entire call chain is below: ks8851_start_xmit_par from netdev_start_xmit netdev_start_xmit from dev_hard_start_xmit dev_hard_start_xmit from sch_direct_xmit sch_direct_xmit from __dev_queue_xmit __dev_queue_xmit from __neigh_update __neigh_update from neigh_update neigh_update from arp_process.constprop.0 arp_process.constprop.0 from __netif_receive_skb_one_core __netif_receive_skb_one_core from process_backlog process_backlog from __napi_poll.constprop.0 __napi_poll.constprop.0 from net_rx_action net_rx_action from __do_softirq __do_softirq from call_with_stack call_with_stack from do_softirq do_softirq from __local_bh_enable_ip __local_bh_enable_ip from netif_rx netif_rx from ks8851_irq ks8851_irq from irq_thread_fn irq_thread_fn from irq_thread irq_thread from kthread kthread from ret_from_fork The hang happens because ks8851_irq() first locks a spinlock in ks8851_par.c ks8851_lock_par() spin_lock_irqsave(&ksp->lock, ...) and with that spinlock locked, calls netif_rx(). Once the execution reaches ks8851_start_xmit_par(), it calls ks8851_lock_par() again which attempts to claim the already locked spinlock again, and the hang happens. Move the do_softirq() call outside of the spinlock protected section of ks8851_irq() by disabling BHs around the entire spinlock protected section of ks8851_irq() handler. Place local_bh_enable() outside of the spinlock protected section, so that it can trigger do_softirq() without the ks8851_par.c ks8851_lock_par() spinlock being held, and safely call ks8851_start_xmit_par() without attempting to lock the already locked spinlock. Since ks8851_irq() is protected by local_bh_disable()/local_bh_enable() now, replace netif_rx() with __netif_rx() which is not duplicating the local_bh_disable()/local_bh_enable() calls.
CVE-2024-35970 In the Linux kernel, the following vulnerability has been resolved: af_unix: Clear stale u->oob_skb. syzkaller started to report deadlock of unix_gc_lock after commit 4090fa373f0e ("af_unix: Replace garbage collection algorithm."), but it just uncovers the bug that has been there since commit 314001f0bf92 ("af_unix: Add OOB support"). The repro basically does the following. from socket import * from array import array c1, c2 = socketpair(AF_UNIX, SOCK_STREAM) c1.sendmsg([b'a'], [(SOL_SOCKET, SCM_RIGHTS, array("i", [c2.fileno()]))], MSG_OOB) c2.recv(1) # blocked as no normal data in recv queue c2.close() # done async and unblock recv() c1.close() # done async and trigger GC A socket sends its file descriptor to itself as OOB data and tries to receive normal data, but finally recv() fails due to async close(). The problem here is wrong handling of OOB skb in manage_oob(). When recvmsg() is called without MSG_OOB, manage_oob() is called to check if the peeked skb is OOB skb. In such a case, manage_oob() pops it out of the receive queue but does not clear unix_sock(sk)->oob_skb. This is wrong in terms of uAPI. Let's say we send "hello" with MSG_OOB, and "world" without MSG_OOB. The 'o' is handled as OOB data. When recv() is called twice without MSG_OOB, the OOB data should be lost. >>> from socket import * >>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM, 0) >>> c1.send(b'hello', MSG_OOB) # 'o' is OOB data 5 >>> c1.send(b'world') 5 >>> c2.recv(5) # OOB data is not received b'hell' >>> c2.recv(5) # OOB date is skipped b'world' >>> c2.recv(5, MSG_OOB) # This should return an error b'o' In the same situation, TCP actually returns -EINVAL for the last recv(). Also, if we do not clear unix_sk(sk)->oob_skb, unix_poll() always set EPOLLPRI even though the data has passed through by previous recv(). To avoid these issues, we must clear unix_sk(sk)->oob_skb when dequeuing it from recv queue. The reason why the old GC did not trigger the deadlock is because the old GC relied on the receive queue to detect the loop. When it is triggered, the socket with OOB data is marked as GC candidate because file refcount == inflight count (1). However, after traversing all inflight sockets, the socket still has a positive inflight count (1), thus the socket is excluded from candidates. Then, the old GC lose the chance to garbage-collect the socket. With the old GC, the repro continues to create true garbage that will never be freed nor detected by kmemleak as it's linked to the global inflight list. That's why we couldn't even notice the issue.
CVE-2024-35969 In the Linux kernel, the following vulnerability has been resolved: ipv6: fix race condition between ipv6_get_ifaddr and ipv6_del_addr Although ipv6_get_ifaddr walks inet6_addr_lst under the RCU lock, it still means hlist_for_each_entry_rcu can return an item that got removed from the list. The memory itself of such item is not freed thanks to RCU but nothing guarantees the actual content of the memory is sane. In particular, the reference count can be zero. This can happen if ipv6_del_addr is called in parallel. ipv6_del_addr removes the entry from inet6_addr_lst (hlist_del_init_rcu(&ifp->addr_lst)) and drops all references (__in6_ifa_put(ifp) + in6_ifa_put(ifp)). With bad enough timing, this can happen: 1. In ipv6_get_ifaddr, hlist_for_each_entry_rcu returns an entry. 2. Then, the whole ipv6_del_addr is executed for the given entry. The reference count drops to zero and kfree_rcu is scheduled. 3. ipv6_get_ifaddr continues and tries to increments the reference count (in6_ifa_hold). 4. The rcu is unlocked and the entry is freed. 5. The freed entry is returned. Prevent increasing of the reference count in such case. The name in6_ifa_hold_safe is chosen to mimic the existing fib6_info_hold_safe. [ 41.506330] refcount_t: addition on 0; use-after-free. [ 41.506760] WARNING: CPU: 0 PID: 595 at lib/refcount.c:25 refcount_warn_saturate+0xa5/0x130 [ 41.507413] Modules linked in: veth bridge stp llc [ 41.507821] CPU: 0 PID: 595 Comm: python3 Not tainted 6.9.0-rc2.main-00208-g49563be82afa #14 [ 41.508479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) [ 41.509163] RIP: 0010:refcount_warn_saturate+0xa5/0x130 [ 41.509586] Code: ad ff 90 0f 0b 90 90 c3 cc cc cc cc 80 3d c0 30 ad 01 00 75 a0 c6 05 b7 30 ad 01 01 90 48 c7 c7 38 cc 7a 8c e8 cc 18 ad ff 90 <0f> 0b 90 90 c3 cc cc cc cc 80 3d 98 30 ad 01 00 0f 85 75 ff ff ff [ 41.510956] RSP: 0018:ffffbda3c026baf0 EFLAGS: 00010282 [ 41.511368] RAX: 0000000000000000 RBX: ffff9e9c46914800 RCX: 0000000000000000 [ 41.511910] RDX: ffff9e9c7ec29c00 RSI: ffff9e9c7ec1c900 RDI: ffff9e9c7ec1c900 [ 41.512445] RBP: ffff9e9c43660c9c R08: 0000000000009ffb R09: 00000000ffffdfff [ 41.512998] R10: 00000000ffffdfff R11: ffffffff8ca58a40 R12: ffff9e9c4339a000 [ 41.513534] R13: 0000000000000001 R14: ffff9e9c438a0000 R15: ffffbda3c026bb48 [ 41.514086] FS: 00007fbc4cda1740(0000) GS:ffff9e9c7ec00000(0000) knlGS:0000000000000000 [ 41.514726] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 41.515176] CR2: 000056233b337d88 CR3: 000000000376e006 CR4: 0000000000370ef0 [ 41.515713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 41.516252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 41.516799] Call Trace: [ 41.517037] <TASK> [ 41.517249] ? __warn+0x7b/0x120 [ 41.517535] ? refcount_warn_saturate+0xa5/0x130 [ 41.517923] ? report_bug+0x164/0x190 [ 41.518240] ? handle_bug+0x3d/0x70 [ 41.518541] ? exc_invalid_op+0x17/0x70 [ 41.520972] ? asm_exc_invalid_op+0x1a/0x20 [ 41.521325] ? refcount_warn_saturate+0xa5/0x130 [ 41.521708] ipv6_get_ifaddr+0xda/0xe0 [ 41.522035] inet6_rtm_getaddr+0x342/0x3f0 [ 41.522376] ? __pfx_inet6_rtm_getaddr+0x10/0x10 [ 41.522758] rtnetlink_rcv_msg+0x334/0x3d0 [ 41.523102] ? netlink_unicast+0x30f/0x390 [ 41.523445] ? __pfx_rtnetlink_rcv_msg+0x10/0x10 [ 41.523832] netlink_rcv_skb+0x53/0x100 [ 41.524157] netlink_unicast+0x23b/0x390 [ 41.524484] netlink_sendmsg+0x1f2/0x440 [ 41.524826] __sys_sendto+0x1d8/0x1f0 [ 41.525145] __x64_sys_sendto+0x1f/0x30 [ 41.525467] do_syscall_64+0xa5/0x1b0 [ 41.525794] entry_SYSCALL_64_after_hwframe+0x72/0x7a [ 41.526213] RIP: 0033:0x7fbc4cfcea9a [ 41.526528] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89 [ 41.527942] RSP: 002b:00007f ---truncated---
CVE-2024-35968 In the Linux kernel, the following vulnerability has been resolved: pds_core: Fix pdsc_check_pci_health function to use work thread When the driver notices fw_status == 0xff it tries to perform a PCI reset on itself via pci_reset_function() in the context of the driver's health thread. However, pdsc_reset_prepare calls pdsc_stop_health_thread(), which attempts to stop/flush the health thread. This results in a deadlock because the stop/flush will never complete since the driver called pci_reset_function() from the health thread context. Fix by changing the pdsc_check_pci_health_function() to queue a newly introduced pdsc_pci_reset_thread() on the pdsc's work queue. Unloading the driver in the fw_down/dead state uncovered another issue, which can be seen in the following trace: WARNING: CPU: 51 PID: 6914 at kernel/workqueue.c:1450 __queue_work+0x358/0x440 [...] RIP: 0010:__queue_work+0x358/0x440 [...] Call Trace: <TASK> ? __warn+0x85/0x140 ? __queue_work+0x358/0x440 ? report_bug+0xfc/0x1e0 ? handle_bug+0x3f/0x70 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? __queue_work+0x358/0x440 queue_work_on+0x28/0x30 pdsc_devcmd_locked+0x96/0xe0 [pds_core] pdsc_devcmd_reset+0x71/0xb0 [pds_core] pdsc_teardown+0x51/0xe0 [pds_core] pdsc_remove+0x106/0x200 [pds_core] pci_device_remove+0x37/0xc0 device_release_driver_internal+0xae/0x140 driver_detach+0x48/0x90 bus_remove_driver+0x6d/0xf0 pci_unregister_driver+0x2e/0xa0 pdsc_cleanup_module+0x10/0x780 [pds_core] __x64_sys_delete_module+0x142/0x2b0 ? syscall_trace_enter.isra.18+0x126/0x1a0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7fbd9d03a14b [...] Fix this by preventing the devcmd reset if the FW is not running.
CVE-2024-35967 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: SCO: Fix not validating setsockopt user input syzbot reported sco_sock_setsockopt() is copying data without checking user input length. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90 net/bluetooth/sco.c:893 Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578
CVE-2024-35966 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: RFCOMM: Fix not validating setsockopt user input syzbot reported rfcomm_sock_setsockopt_old() is copying data without checking user input length. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt_old net/bluetooth/rfcomm/sock.c:632 [inline] BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt+0x893/0xa70 net/bluetooth/rfcomm/sock.c:673 Read of size 4 at addr ffff8880209a8bc3 by task syz-executor632/5064
CVE-2024-35965 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix not validating setsockopt user input Check user input length before copying data.
CVE-2024-35964 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: ISO: Fix not validating setsockopt user input Check user input length before copying data.
CVE-2024-35963 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sock: Fix not validating setsockopt user input Check user input length before copying data.
CVE-2024-35962 In the Linux kernel, the following vulnerability has been resolved: netfilter: complete validation of user input In my recent commit, I missed that do_replace() handlers use copy_from_sockptr() (which I fixed), followed by unsafe copy_from_sockptr_offset() calls. In all functions, we can perform the @optlen validation before even calling xt_alloc_table_info() with the following check: if ((u64)optlen < (u64)tmp.size + sizeof(tmp)) return -EINVAL;
CVE-2024-35961 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Register devlink first under devlink lock In case device is having a non fatal FW error during probe, the driver will report the error to user via devlink. This will trigger a WARN_ON, since mlx5 is calling devlink_register() last. In order to avoid the WARN_ON[1], change mlx5 to invoke devl_register() first under devlink lock. [1] WARNING: CPU: 5 PID: 227 at net/devlink/health.c:483 devlink_recover_notify.constprop.0+0xb8/0xc0 CPU: 5 PID: 227 Comm: kworker/u16:3 Not tainted 6.4.0-rc5_for_upstream_min_debug_2023_06_12_12_38 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5_health0000:08:00.0 mlx5_fw_reporter_err_work [mlx5_core] RIP: 0010:devlink_recover_notify.constprop.0+0xb8/0xc0 Call Trace: <TASK> ? __warn+0x79/0x120 ? devlink_recover_notify.constprop.0+0xb8/0xc0 ? report_bug+0x17c/0x190 ? handle_bug+0x3c/0x60 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? devlink_recover_notify.constprop.0+0xb8/0xc0 devlink_health_report+0x4a/0x1c0 mlx5_fw_reporter_err_work+0xa4/0xd0 [mlx5_core] process_one_work+0x1bb/0x3c0 ? process_one_work+0x3c0/0x3c0 worker_thread+0x4d/0x3c0 ? process_one_work+0x3c0/0x3c0 kthread+0xc6/0xf0 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK>
CVE-2024-35960 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Properly link new fs rules into the tree Previously, add_rule_fg would only add newly created rules from the handle into the tree when they had a refcount of 1. On the other hand, create_flow_handle tries hard to find and reference already existing identical rules instead of creating new ones. These two behaviors can result in a situation where create_flow_handle 1) creates a new rule and references it, then 2) in a subsequent step during the same handle creation references it again, resulting in a rule with a refcount of 2 that is not linked into the tree, will have a NULL parent and root and will result in a crash when the flow group is deleted because del_sw_hw_rule, invoked on rule deletion, assumes node->parent is != NULL. This happened in the wild, due to another bug related to incorrect handling of duplicate pkt_reformat ids, which lead to the code in create_flow_handle incorrectly referencing a just-added rule in the same flow handle, resulting in the problem described above. Full details are at [1]. This patch changes add_rule_fg to add new rules without parents into the tree, properly initializing them and avoiding the crash. This makes it more consistent with how rules are added to an FTE in create_flow_handle.
CVE-2024-35959 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix mlx5e_priv_init() cleanup flow When mlx5e_priv_init() fails, the cleanup flow calls mlx5e_selq_cleanup which calls mlx5e_selq_apply() that assures that the `priv->state_lock` is held using lockdep_is_held(). Acquire the state_lock in mlx5e_selq_cleanup(). Kernel log: ============================= WARNING: suspicious RCU usage 6.8.0-rc3_net_next_841a9b5 #1 Not tainted ----------------------------- drivers/net/ethernet/mellanox/mlx5/core/en/selq.c:124 suspicious rcu_dereference_protected() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 2 locks held by systemd-modules/293: #0: ffffffffa05067b0 (devices_rwsem){++++}-{3:3}, at: ib_register_client+0x109/0x1b0 [ib_core] #1: ffff8881096c65c0 (&device->client_data_rwsem){++++}-{3:3}, at: add_client_context+0x104/0x1c0 [ib_core] stack backtrace: CPU: 4 PID: 293 Comm: systemd-modules Not tainted 6.8.0-rc3_net_next_841a9b5 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x8a/0xa0 lockdep_rcu_suspicious+0x154/0x1a0 mlx5e_selq_apply+0x94/0xa0 [mlx5_core] mlx5e_selq_cleanup+0x3a/0x60 [mlx5_core] mlx5e_priv_init+0x2be/0x2f0 [mlx5_core] mlx5_rdma_setup_rn+0x7c/0x1a0 [mlx5_core] rdma_init_netdev+0x4e/0x80 [ib_core] ? mlx5_rdma_netdev_free+0x70/0x70 [mlx5_core] ipoib_intf_init+0x64/0x550 [ib_ipoib] ipoib_intf_alloc+0x4e/0xc0 [ib_ipoib] ipoib_add_one+0xb0/0x360 [ib_ipoib] add_client_context+0x112/0x1c0 [ib_core] ib_register_client+0x166/0x1b0 [ib_core] ? 0xffffffffa0573000 ipoib_init_module+0xeb/0x1a0 [ib_ipoib] do_one_initcall+0x61/0x250 do_init_module+0x8a/0x270 init_module_from_file+0x8b/0xd0 idempotent_init_module+0x17d/0x230 __x64_sys_finit_module+0x61/0xb0 do_syscall_64+0x71/0x140 entry_SYSCALL_64_after_hwframe+0x46/0x4e </TASK>
CVE-2024-35958 In the Linux kernel, the following vulnerability has been resolved: net: ena: Fix incorrect descriptor free behavior ENA has two types of TX queues: - queues which only process TX packets arriving from the network stack - queues which only process TX packets forwarded to it by XDP_REDIRECT or XDP_TX instructions The ena_free_tx_bufs() cycles through all descriptors in a TX queue and unmaps + frees every descriptor that hasn't been acknowledged yet by the device (uncompleted TX transactions). The function assumes that the processed TX queue is necessarily from the first category listed above and ends up using napi_consume_skb() for descriptors belonging to an XDP specific queue. This patch solves a bug in which, in case of a VF reset, the descriptors aren't freed correctly, leading to crashes.
CVE-2024-35957 In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix WARN_ON in iommu probe path Commit 1a75cc710b95 ("iommu/vt-d: Use rbtree to track iommu probed devices") adds all devices probed by the iommu driver in a rbtree indexed by the source ID of each device. It assumes that each device has a unique source ID. This assumption is incorrect and the VT-d spec doesn't state this requirement either. The reason for using a rbtree to track devices is to look up the device with PCI bus and devfunc in the paths of handling ATS invalidation time out error and the PRI I/O page faults. Both are PCI ATS feature related. Only track the devices that have PCI ATS capabilities in the rbtree to avoid unnecessary WARN_ON in the iommu probe path. Otherwise, on some platforms below kernel splat will be displayed and the iommu probe results in failure. WARNING: CPU: 3 PID: 166 at drivers/iommu/intel/iommu.c:158 intel_iommu_probe_device+0x319/0xd90 Call Trace: <TASK> ? __warn+0x7e/0x180 ? intel_iommu_probe_device+0x319/0xd90 ? report_bug+0x1f8/0x200 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? intel_iommu_probe_device+0x319/0xd90 ? debug_mutex_init+0x37/0x50 __iommu_probe_device+0xf2/0x4f0 iommu_probe_device+0x22/0x70 iommu_bus_notifier+0x1e/0x40 notifier_call_chain+0x46/0x150 blocking_notifier_call_chain+0x42/0x60 bus_notify+0x2f/0x50 device_add+0x5ed/0x7e0 platform_device_add+0xf5/0x240 mfd_add_devices+0x3f9/0x500 ? preempt_count_add+0x4c/0xa0 ? up_write+0xa2/0x1b0 ? __debugfs_create_file+0xe3/0x150 intel_lpss_probe+0x49f/0x5b0 ? pci_conf1_write+0xa3/0xf0 intel_lpss_pci_probe+0xcf/0x110 [intel_lpss_pci] pci_device_probe+0x95/0x120 really_probe+0xd9/0x370 ? __pfx___driver_attach+0x10/0x10 __driver_probe_device+0x73/0x150 driver_probe_device+0x19/0xa0 __driver_attach+0xb6/0x180 ? __pfx___driver_attach+0x10/0x10 bus_for_each_dev+0x77/0xd0 bus_add_driver+0x114/0x210 driver_register+0x5b/0x110 ? __pfx_intel_lpss_pci_driver_init+0x10/0x10 [intel_lpss_pci] do_one_initcall+0x57/0x2b0 ? kmalloc_trace+0x21e/0x280 ? do_init_module+0x1e/0x210 do_init_module+0x5f/0x210 load_module+0x1d37/0x1fc0 ? init_module_from_file+0x86/0xd0 init_module_from_file+0x86/0xd0 idempotent_init_module+0x17c/0x230 __x64_sys_finit_module+0x56/0xb0 do_syscall_64+0x6e/0x140 entry_SYSCALL_64_after_hwframe+0x71/0x79
CVE-2024-35956 In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix qgroup prealloc rsv leak in subvolume operations Create subvolume, create snapshot and delete subvolume all use btrfs_subvolume_reserve_metadata() to reserve metadata for the changes done to the parent subvolume's fs tree, which cannot be mediated in the normal way via start_transaction. When quota groups (squota or qgroups) are enabled, this reserves qgroup metadata of type PREALLOC. Once the operation is associated to a transaction, we convert PREALLOC to PERTRANS, which gets cleared in bulk at the end of the transaction. However, the error paths of these three operations were not implementing this lifecycle correctly. They unconditionally converted the PREALLOC to PERTRANS in a generic cleanup step regardless of errors or whether the operation was fully associated to a transaction or not. This resulted in error paths occasionally converting this rsv to PERTRANS without calling record_root_in_trans successfully, which meant that unless that root got recorded in the transaction by some other thread, the end of the transaction would not free that root's PERTRANS, leaking it. Ultimately, this resulted in hitting a WARN in CONFIG_BTRFS_DEBUG builds at unmount for the leaked reservation. The fix is to ensure that every qgroup PREALLOC reservation observes the following properties: 1. any failure before record_root_in_trans is called successfully results in freeing the PREALLOC reservation. 2. after record_root_in_trans, we convert to PERTRANS, and now the transaction owns freeing the reservation. This patch enforces those properties on the three operations. Without it, generic/269 with squotas enabled at mkfs time would fail in ~5-10 runs on my system. With this patch, it ran successfully 1000 times in a row.
CVE-2024-35955 In the Linux kernel, the following vulnerability has been resolved: kprobes: Fix possible use-after-free issue on kprobe registration When unloading a module, its state is changing MODULE_STATE_LIVE -> MODULE_STATE_GOING -> MODULE_STATE_UNFORMED. Each change will take a time. `is_module_text_address()` and `__module_text_address()` works with MODULE_STATE_LIVE and MODULE_STATE_GOING. If we use `is_module_text_address()` and `__module_text_address()` separately, there is a chance that the first one is succeeded but the next one is failed because module->state becomes MODULE_STATE_UNFORMED between those operations. In `check_kprobe_address_safe()`, if the second `__module_text_address()` is failed, that is ignored because it expected a kernel_text address. But it may have failed simply because module->state has been changed to MODULE_STATE_UNFORMED. In this case, arm_kprobe() will try to modify non-exist module text address (use-after-free). To fix this problem, we should not use separated `is_module_text_address()` and `__module_text_address()`, but use only `__module_text_address()` once and do `try_module_get(module)` which is only available with MODULE_STATE_LIVE.
CVE-2024-35954 In the Linux kernel, the following vulnerability has been resolved: scsi: sg: Avoid sg device teardown race sg_remove_sfp_usercontext() must not use sg_device_destroy() after calling scsi_device_put(). sg_device_destroy() is accessing the parent scsi_device request_queue which will already be set to NULL when the preceding call to scsi_device_put() removed the last reference to the parent scsi_device. The resulting NULL pointer exception will then crash the kernel.
CVE-2024-35953 In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Fix deadlock in context_xa ivpu_device->context_xa is locked both in kernel thread and IRQ context. It requires XA_FLAGS_LOCK_IRQ flag to be passed during initialization otherwise the lock could be acquired from a thread and interrupted by an IRQ that locks it for the second time causing the deadlock. This deadlock was reported by lockdep and observed in internal tests.
CVE-2024-35952 In the Linux kernel, the following vulnerability has been resolved: drm/ast: Fix soft lockup There is a while-loop in ast_dp_set_on_off() that could lead to infinite-loop. This is because the register, VGACRI-Dx, checked in this API is a scratch register actually controlled by a MCU, named DPMCU, in BMC. These scratch registers are protected by scu-lock. If suc-lock is not off, DPMCU can not update these registers and then host will have soft lockup due to never updated status. DPMCU is used to control DP and relative registers to handshake with host's VGA driver. Even the most time-consuming task, DP's link training, is less than 100ms. 200ms should be enough.
CVE-2024-35951 In the Linux kernel, the following vulnerability has been resolved: drm/panfrost: Fix the error path in panfrost_mmu_map_fault_addr() Subject: [PATCH] drm/panfrost: Fix the error path in panfrost_mmu_map_fault_addr() If some the pages or sgt allocation failed, we shouldn't release the pages ref we got earlier, otherwise we will end up with unbalanced get/put_pages() calls. We should instead leave everything in place and let the BO release function deal with extra cleanup when the object is destroyed, or let the fault handler try again next time it's called.
CVE-2024-35950 In the Linux kernel, the following vulnerability has been resolved: drm/client: Fully protect modes[] with dev->mode_config.mutex The modes[] array contains pointers to modes on the connectors' mode lists, which are protected by dev->mode_config.mutex. Thus we need to extend modes[] the same protection or by the time we use it the elements may already be pointing to freed/reused memory.
CVE-2024-35949 In the Linux kernel, the following vulnerability has been resolved: btrfs: make sure that WRITTEN is set on all metadata blocks We previously would call btrfs_check_leaf() if we had the check integrity code enabled, which meant that we could only run the extended leaf checks if we had WRITTEN set on the header flags. This leaves a gap in our checking, because we could end up with corruption on disk where WRITTEN isn't set on the leaf, and then the extended leaf checks don't get run which we rely on to validate all of the item pointers to make sure we don't access memory outside of the extent buffer. However, since 732fab95abe2 ("btrfs: check-integrity: remove CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only ever call it on blocks that are being written out, and thus have WRITTEN set, or that are being read in, which should have WRITTEN set. Add checks to make sure we have WRITTEN set appropriately, and then make sure __btrfs_check_leaf() always does the item checking. This will protect us from file systems that have been corrupted and no longer have WRITTEN set on some of the blocks. This was hit on a crafted image tweaking the WRITTEN bit and reported by KASAN as out-of-bound access in the eb accessors. The example is a dir item at the end of an eb. [2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2 [2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI [2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f] [2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1 [2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0 [2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206 [2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0 [2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748 [2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9 [2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a [2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8 [2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000 [2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0 [2.621] Call Trace: [2.621] <TASK> [2.621] ? show_regs+0x74/0x80 [2.621] ? die_addr+0x46/0xc0 [2.621] ? exc_general_protection+0x161/0x2a0 [2.621] ? asm_exc_general_protection+0x26/0x30 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? btrfs_get_16+0x34b/0x6d0 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? __pfx_btrfs_get_16+0x10/0x10 [2.621] ? __pfx_mutex_unlock+0x10/0x10 [2.621] btrfs_match_dir_item_name+0x101/0x1a0 [2.621] btrfs_lookup_dir_item+0x1f3/0x280 [2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10 [2.621] btrfs_get_tree+0xd25/0x1910 [ copy more details from report ]
CVE-2024-35948 In the Linux kernel, the following vulnerability has been resolved: bcachefs: Check for journal entries overruning end of sb clean section Fix a missing bounds check in superblock validation. Note that we don't yet have repair code for this case - repair code for individual items is generally low priority, since the whole superblock is checksummed, validated prior to write, and we have backups.
CVE-2024-35947 In the Linux kernel, the following vulnerability has been resolved: dyndbg: fix old BUG_ON in >control parser Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't really look), lets make sure by removing it, doing pr_err and return -EINVAL instead.
CVE-2024-35946 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix null pointer access when abort scan During cancel scan we might use vif that weren't scanning. Fix this by using the actual scanning vif.
CVE-2024-35945 In the Linux kernel, the following vulnerability has been resolved: net: phy: phy_device: Prevent nullptr exceptions on ISR If phydev->irq is set unconditionally, check for valid interrupt handler or fall back to polling mode to prevent nullptr exceptions in interrupt service routine.
CVE-2024-35944 In the Linux kernel, the following vulnerability has been resolved: VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host() Syzkaller hit 'WARNING in dg_dispatch_as_host' bug. memcpy: detected field-spanning write (size 56) of single field "&dg_info->msg" at drivers/misc/vmw_vmci/vmci_datagram.c:237 (size 24) WARNING: CPU: 0 PID: 1555 at drivers/misc/vmw_vmci/vmci_datagram.c:237 dg_dispatch_as_host+0x88e/0xa60 drivers/misc/vmw_vmci/vmci_datagram.c:237 Some code commentry, based on my understanding: 544 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size) /// This is 24 + payload_size memcpy(&dg_info->msg, dg, dg_size); Destination = dg_info->msg ---> this is a 24 byte structure(struct vmci_datagram) Source = dg --> this is a 24 byte structure (struct vmci_datagram) Size = dg_size = 24 + payload_size {payload_size = 56-24 =32} -- Syzkaller managed to set payload_size to 32. 35 struct delayed_datagram_info { 36 struct datagram_entry *entry; 37 struct work_struct work; 38 bool in_dg_host_queue; 39 /* msg and msg_payload must be together. */ 40 struct vmci_datagram msg; 41 u8 msg_payload[]; 42 }; So those extra bytes of payload are copied into msg_payload[], a run time warning is seen while fuzzing with Syzkaller. One possible way to fix the warning is to split the memcpy() into two parts -- one -- direct assignment of msg and second taking care of payload. Gustavo quoted: "Under FORTIFY_SOURCE we should not copy data across multiple members in a structure."
CVE-2024-35943 In the Linux kernel, the following vulnerability has been resolved: pmdomain: ti: Add a null pointer check to the omap_prm_domain_init devm_kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Ensure the allocation was successful by checking the pointer validity.
CVE-2024-35942 In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx8mp-blk-ctrl: imx8mp_blk: Add fdcc clock to hdmimix domain According to i.MX8MP RM and HDMI ADD, the fdcc clock is part of hdmi rx verification IP that should not enable for HDMI TX. But actually if the clock is disabled before HDMI/LCDIF probe, LCDIF will not get pixel clock from HDMI PHY and print the error logs: [CRTC:39:crtc-2] vblank wait timed out WARNING: CPU: 2 PID: 9 at drivers/gpu/drm/drm_atomic_helper.c:1634 drm_atomic_helper_wait_for_vblanks.part.0+0x23c/0x260 Add fdcc clock to LCDIF and HDMI TX power domains to fix the issue.
CVE-2024-35941 In the Linux kernel, the following vulnerability has been resolved: net: skbuff: add overflow debug check to pull/push helpers syzbot managed to trigger following splat: BUG: KASAN: use-after-free in __skb_flow_dissect+0x4a3b/0x5e50 Read of size 1 at addr ffff888208a4000e by task a.out/2313 [..] __skb_flow_dissect+0x4a3b/0x5e50 __skb_get_hash+0xb4/0x400 ip_tunnel_xmit+0x77e/0x26f0 ipip_tunnel_xmit+0x298/0x410 .. Analysis shows that the skb has a valid ->head, but bogus ->data pointer. skb->data gets its bogus value via the neigh layer, which does: 1556 __skb_pull(skb, skb_network_offset(skb)); ... and the skb was already dodgy at this point: skb_network_offset(skb) returns a negative value due to an earlier overflow of skb->network_header (u16). __skb_pull thus "adjusts" skb->data by a huge offset, pointing outside skb->head area. Allow debug builds to splat when we try to pull/push more than INT_MAX bytes. After this, the syzkaller reproducer yields a more precise splat before the flow dissector attempts to read off skb->data memory: WARNING: CPU: 5 PID: 2313 at include/linux/skbuff.h:2653 neigh_connected_output+0x28e/0x400 ip_finish_output2+0xb25/0xed0 iptunnel_xmit+0x4ff/0x870 ipgre_xmit+0x78e/0xbb0
CVE-2024-35940 In the Linux kernel, the following vulnerability has been resolved: pstore/zone: Add a null pointer check to the psz_kmsg_read kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Ensure the allocation was successful by checking the pointer validity.
CVE-2024-35939 In the Linux kernel, the following vulnerability has been resolved: dma-direct: Leak pages on dma_set_decrypted() failure On TDX it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. DMA could free decrypted/shared pages if dma_set_decrypted() fails. This should be a rare case. Just leak the pages in this case instead of freeing them.
CVE-2024-35938 In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: decrease MHI channel buffer length to 8KB Currently buf_len field of ath11k_mhi_config_qca6390 is assigned with 0, making MHI use a default size, 64KB, to allocate channel buffers. This is likely to fail in some scenarios where system memory is highly fragmented and memory compaction or reclaim is not allowed. There is a fail report which is caused by it: kworker/u32:45: page allocation failure: order:4, mode:0x40c00(GFP_NOIO|__GFP_COMP), nodemask=(null),cpuset=/,mems_allowed=0 CPU: 0 PID: 19318 Comm: kworker/u32:45 Not tainted 6.8.0-rc3-1.gae4495f-default #1 openSUSE Tumbleweed (unreleased) 493b6d5b382c603654d7a81fc3c144d59a1dfceb Workqueue: events_unbound async_run_entry_fn Call Trace: <TASK> dump_stack_lvl+0x47/0x60 warn_alloc+0x13a/0x1b0 ? srso_alias_return_thunk+0x5/0xfbef5 ? __alloc_pages_direct_compact+0xab/0x210 __alloc_pages_slowpath.constprop.0+0xd3e/0xda0 __alloc_pages+0x32d/0x350 ? mhi_prepare_channel+0x127/0x2d0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814] __kmalloc_large_node+0x72/0x110 __kmalloc+0x37c/0x480 ? mhi_map_single_no_bb+0x77/0xf0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814] ? mhi_prepare_channel+0x127/0x2d0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814] mhi_prepare_channel+0x127/0x2d0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814] __mhi_prepare_for_transfer+0x44/0x80 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814] ? __pfx_____mhi_prepare_for_transfer+0x10/0x10 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814] device_for_each_child+0x5c/0xa0 ? __pfx_pci_pm_resume+0x10/0x10 ath11k_core_resume+0x65/0x100 [ath11k a5094e22d7223135c40d93c8f5321cf09fd85e4e] ? srso_alias_return_thunk+0x5/0xfbef5 ath11k_pci_pm_resume+0x32/0x60 [ath11k_pci 830b7bfc3ea80ebef32e563cafe2cb55e9cc73ec] ? srso_alias_return_thunk+0x5/0xfbef5 dpm_run_callback+0x8c/0x1e0 device_resume+0x104/0x340 ? __pfx_dpm_watchdog_handler+0x10/0x10 async_resume+0x1d/0x30 async_run_entry_fn+0x32/0x120 process_one_work+0x168/0x330 worker_thread+0x2f5/0x410 ? __pfx_worker_thread+0x10/0x10 kthread+0xe8/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> Actually those buffers are used only by QMI target -> host communication. And for WCN6855 and QCA6390, the largest packet size for that is less than 6KB. So change buf_len field to 8KB, which results in order 1 allocation if page size is 4KB. In this way, we can at least save some memory, and as well as decrease the possibility of allocation failure in those scenarios. Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
CVE-2024-35937 In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: check A-MSDU format more carefully If it looks like there's another subframe in the A-MSDU but the header isn't fully there, we can end up reading data out of bounds, only to discard later. Make this a bit more careful and check if the subframe header can even be present.
CVE-2024-35936 In the Linux kernel, the following vulnerability has been resolved: btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks() The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption, as it could be caused only by two impossible conditions: - at first the search key is set up to look for a chunk tree item, with offset -1, this is an inexact search and the key->offset will contain the correct offset upon a successful search, a valid chunk tree item cannot have an offset -1 - after first successful search, the found_key corresponds to a chunk item, the offset is decremented by 1 before the next loop, it's impossible to find a chunk item there due to alignment and size constraints
CVE-2024-35935 In the Linux kernel, the following vulnerability has been resolved: btrfs: send: handle path ref underflow in header iterate_inode_ref() Change BUG_ON to proper error handling if building the path buffer fails. The pointers are not printed so we don't accidentally leak kernel addresses.
CVE-2024-35934 In the Linux kernel, the following vulnerability has been resolved: net/smc: reduce rtnl pressure in smc_pnet_create_pnetids_list() Many syzbot reports show extreme rtnl pressure, and many of them hint that smc acquires rtnl in netns creation for no good reason [1] This patch returns early from smc_pnet_net_init() if there is no netdevice yet. I am not even sure why smc_pnet_create_pnetids_list() even exists, because smc_pnet_netdev_event() is also calling smc_pnet_add_base_pnetid() when handling NETDEV_UP event. [1] extract of typical syzbot reports 2 locks held by syz-executor.3/12252: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12253: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12257: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12261: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.0/12265: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.3/12268: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12271: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12274: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12280: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
CVE-2024-35933 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btintel: Fix null ptr deref in btintel_read_version If hci_cmd_sync_complete() is triggered and skb is NULL, then hdev->req_skb is NULL, which will cause this issue.
CVE-2024-35932 In the Linux kernel, the following vulnerability has been resolved: drm/vc4: don't check if plane->state->fb == state->fb Currently, when using non-blocking commits, we can see the following kernel warning: [ 110.908514] ------------[ cut here ]------------ [ 110.908529] refcount_t: underflow; use-after-free. [ 110.908620] WARNING: CPU: 0 PID: 1866 at lib/refcount.c:87 refcount_dec_not_one+0xb8/0xc0 [ 110.908664] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device cmac algif_hash aes_arm64 aes_generic algif_skcipher af_alg bnep hid_logitech_hidpp vc4 brcmfmac hci_uart btbcm brcmutil bluetooth snd_soc_hdmi_codec cfg80211 cec drm_display_helper drm_dma_helper drm_kms_helper snd_soc_core snd_compress snd_pcm_dmaengine fb_sys_fops sysimgblt syscopyarea sysfillrect raspberrypi_hwmon ecdh_generic ecc rfkill libaes i2c_bcm2835 binfmt_misc joydev snd_bcm2835(C) bcm2835_codec(C) bcm2835_isp(C) v4l2_mem2mem videobuf2_dma_contig snd_pcm bcm2835_v4l2(C) raspberrypi_gpiomem bcm2835_mmal_vchiq(C) videobuf2_v4l2 snd_timer videobuf2_vmalloc videobuf2_memops videobuf2_common snd videodev vc_sm_cma(C) mc hid_logitech_dj uio_pdrv_genirq uio i2c_dev drm fuse dm_mod drm_panel_orientation_quirks backlight ip_tables x_tables ipv6 [ 110.909086] CPU: 0 PID: 1866 Comm: kodi.bin Tainted: G C 6.1.66-v8+ #32 [ 110.909104] Hardware name: Raspberry Pi 3 Model B Rev 1.2 (DT) [ 110.909114] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 110.909132] pc : refcount_dec_not_one+0xb8/0xc0 [ 110.909152] lr : refcount_dec_not_one+0xb4/0xc0 [ 110.909170] sp : ffffffc00913b9c0 [ 110.909177] x29: ffffffc00913b9c0 x28: 000000556969bbb0 x27: 000000556990df60 [ 110.909205] x26: 0000000000000002 x25: 0000000000000004 x24: ffffff8004448480 [ 110.909230] x23: ffffff800570b500 x22: ffffff802e03a7bc x21: ffffffecfca68c78 [ 110.909257] x20: ffffff8002b42000 x19: ffffff802e03a600 x18: 0000000000000000 [ 110.909283] x17: 0000000000000011 x16: ffffffffffffffff x15: 0000000000000004 [ 110.909308] x14: 0000000000000fff x13: ffffffed577e47e0 x12: 0000000000000003 [ 110.909333] x11: 0000000000000000 x10: 0000000000000027 x9 : c912d0d083728c00 [ 110.909359] x8 : c912d0d083728c00 x7 : 65646e75203a745f x6 : 746e756f63666572 [ 110.909384] x5 : ffffffed579f62ee x4 : ffffffed579eb01e x3 : 0000000000000000 [ 110.909409] x2 : 0000000000000000 x1 : ffffffc00913b750 x0 : 0000000000000001 [ 110.909434] Call trace: [ 110.909441] refcount_dec_not_one+0xb8/0xc0 [ 110.909461] vc4_bo_dec_usecnt+0x4c/0x1b0 [vc4] [ 110.909903] vc4_cleanup_fb+0x44/0x50 [vc4] [ 110.910315] drm_atomic_helper_cleanup_planes+0x88/0xa4 [drm_kms_helper] [ 110.910669] vc4_atomic_commit_tail+0x390/0x9dc [vc4] [ 110.911079] commit_tail+0xb0/0x164 [drm_kms_helper] [ 110.911397] drm_atomic_helper_commit+0x1d0/0x1f0 [drm_kms_helper] [ 110.911716] drm_atomic_commit+0xb0/0xdc [drm] [ 110.912569] drm_mode_atomic_ioctl+0x348/0x4b8 [drm] [ 110.913330] drm_ioctl_kernel+0xec/0x15c [drm] [ 110.914091] drm_ioctl+0x24c/0x3b0 [drm] [ 110.914850] __arm64_sys_ioctl+0x9c/0xd4 [ 110.914873] invoke_syscall+0x4c/0x114 [ 110.914897] el0_svc_common+0xd0/0x118 [ 110.914917] do_el0_svc+0x38/0xd0 [ 110.914936] el0_svc+0x30/0x8c [ 110.914958] el0t_64_sync_handler+0x84/0xf0 [ 110.914979] el0t_64_sync+0x18c/0x190 [ 110.914996] ---[ end trace 0000000000000000 ]--- This happens because, although `prepare_fb` and `cleanup_fb` are perfectly balanced, we cannot guarantee consistency in the check plane->state->fb == state->fb. This means that sometimes we can increase the refcount in `prepare_fb` and don't decrease it in `cleanup_fb`. The opposite can also be true. In fact, the struct drm_plane .state shouldn't be accessed directly but instead, the `drm_atomic_get_new_plane_state()` helper function should be used. So, we could stick to this check, but using `drm_atomic_get_new_plane_state()`. But actually, this check is not re ---truncated---
CVE-2024-35931 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Skip do PCI error slot reset during RAS recovery Why: The PCI error slot reset maybe triggered after inject ue to UMC multi times, this caused system hang. [ 557.371857] amdgpu 0000:af:00.0: amdgpu: GPU reset succeeded, trying to resume [ 557.373718] [drm] PCIE GART of 512M enabled. [ 557.373722] [drm] PTB located at 0x0000031FED700000 [ 557.373788] [drm] VRAM is lost due to GPU reset! [ 557.373789] [drm] PSP is resuming... [ 557.547012] mlx5_core 0000:55:00.0: mlx5_pci_err_detected Device state = 1 pci_status: 0. Exit, result = 3, need reset [ 557.547067] [drm] PCI error: detected callback, state(1)!! [ 557.547069] [drm] No support for XGMI hive yet... [ 557.548125] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 0. Enter [ 557.607763] mlx5_core 0000:55:00.0: wait vital counter value 0x16b5b after 1 iterations [ 557.607777] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 1. Exit, err = 0, result = 5, recovered [ 557.610492] [drm] PCI error: slot reset callback!! ... [ 560.689382] amdgpu 0000:3f:00.0: amdgpu: GPU reset(2) succeeded! [ 560.689546] amdgpu 0000:5a:00.0: amdgpu: GPU reset(2) succeeded! [ 560.689562] general protection fault, probably for non-canonical address 0x5f080b54534f611f: 0000 [#1] SMP NOPTI [ 560.701008] CPU: 16 PID: 2361 Comm: kworker/u448:9 Tainted: G OE 5.15.0-91-generic #101-Ubuntu [ 560.712057] Hardware name: Microsoft C278A/C278A, BIOS C2789.5.BS.1C11.AG.1 11/08/2023 [ 560.720959] Workqueue: amdgpu-reset-hive amdgpu_ras_do_recovery [amdgpu] [ 560.728887] RIP: 0010:amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu] [ 560.736891] Code: ff 41 89 c6 e9 1b ff ff ff 44 0f b6 45 b0 e9 4f ff ff ff be 01 00 00 00 4c 89 e7 e8 76 c9 8b ff 44 0f b6 45 b0 e9 3c fd ff ff <48> 83 ba 18 02 00 00 00 0f 84 6a f8 ff ff 48 8d 7a 78 be 01 00 00 [ 560.757967] RSP: 0018:ffa0000032e53d80 EFLAGS: 00010202 [ 560.763848] RAX: ffa00000001dfd10 RBX: ffa0000000197090 RCX: ffa0000032e53db0 [ 560.771856] RDX: 5f080b54534f5f07 RSI: 0000000000000000 RDI: ff11000128100010 [ 560.779867] RBP: ffa0000032e53df0 R08: 0000000000000000 R09: ffffffffffe77f08 [ 560.787879] R10: 0000000000ffff0a R11: 0000000000000001 R12: 0000000000000000 [ 560.795889] R13: ffa0000032e53e00 R14: 0000000000000000 R15: 0000000000000000 [ 560.803889] FS: 0000000000000000(0000) GS:ff11007e7e800000(0000) knlGS:0000000000000000 [ 560.812973] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 560.819422] CR2: 000055a04c118e68 CR3: 0000000007410005 CR4: 0000000000771ee0 [ 560.827433] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 560.835433] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 560.843444] PKRU: 55555554 [ 560.846480] Call Trace: [ 560.849225] <TASK> [ 560.851580] ? show_trace_log_lvl+0x1d6/0x2ea [ 560.856488] ? show_trace_log_lvl+0x1d6/0x2ea [ 560.861379] ? amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu] [ 560.867778] ? show_regs.part.0+0x23/0x29 [ 560.872293] ? __die_body.cold+0x8/0xd [ 560.876502] ? die_addr+0x3e/0x60 [ 560.880238] ? exc_general_protection+0x1c5/0x410 [ 560.885532] ? asm_exc_general_protection+0x27/0x30 [ 560.891025] ? amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu] [ 560.898323] amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu] [ 560.904520] process_one_work+0x228/0x3d0 How: In RAS recovery, mode-1 reset is issued from RAS fatal error handling and expected all the nodes in a hive to be reset. no need to issue another mode-1 during this procedure.
CVE-2024-35930 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix possible memory leak in lpfc_rcv_padisc() The call to lpfc_sli4_resume_rpi() in lpfc_rcv_padisc() may return an unsuccessful status. In such cases, the elsiocb is not issued, the completion is not called, and thus the elsiocb resource is leaked. Check return value after calling lpfc_sli4_resume_rpi() and conditionally release the elsiocb resource.
CVE-2024-35929 In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix WARN_ON_ONCE() in the rcu_nocb_bypass_lock() For the kernels built with CONFIG_RCU_NOCB_CPU_DEFAULT_ALL=y and CONFIG_RCU_LAZY=y, the following scenarios will trigger WARN_ON_ONCE() in the rcu_nocb_bypass_lock() and rcu_nocb_wait_contended() functions: CPU2 CPU11 kthread rcu_nocb_cb_kthread ksys_write rcu_do_batch vfs_write rcu_torture_timer_cb proc_sys_write __kmem_cache_free proc_sys_call_handler kmemleak_free drop_caches_sysctl_handler delete_object_full drop_slab __delete_object shrink_slab put_object lazy_rcu_shrink_scan call_rcu rcu_nocb_flush_bypass __call_rcu_commn rcu_nocb_bypass_lock raw_spin_trylock(&rdp->nocb_bypass_lock) fail atomic_inc(&rdp->nocb_lock_contended); rcu_nocb_wait_contended WARN_ON_ONCE(smp_processor_id() != rdp->cpu); WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)) | |_ _ _ _ _ _ _ _ _ _same rdp and rdp->cpu != 11_ _ _ _ _ _ _ _ _ __| Reproduce this bug with "echo 3 > /proc/sys/vm/drop_caches". This commit therefore uses rcu_nocb_try_flush_bypass() instead of rcu_nocb_flush_bypass() in lazy_rcu_shrink_scan(). If the nocb_bypass queue is being flushed, then rcu_nocb_try_flush_bypass will return directly.
CVE-2024-35928 In the Linux kernel, the following vulnerability has been resolved: drm/amd/amdgpu: Fix potential ioremap() memory leaks in amdgpu_device_init() This ensures that the memory mapped by ioremap for adev->rmmio, is properly handled in amdgpu_device_init(). If the function exits early due to an error, the memory is unmapped. If the function completes successfully, the memory remains mapped. Reported by smatch: drivers/gpu/drm/amd/amdgpu/amdgpu_device.c:4337 amdgpu_device_init() warn: 'adev->rmmio' from ioremap() not released on lines: 4035,4045,4051,4058,4068,4337
CVE-2024-35927 In the Linux kernel, the following vulnerability has been resolved: drm: Check output polling initialized before disabling In drm_kms_helper_poll_disable() check if output polling support is initialized before disabling polling. If not flag this as a warning. Additionally in drm_mode_config_helper_suspend() and drm_mode_config_helper_resume() calls, that re the callers of these functions, avoid invoking them if polling is not initialized. For drivers like hyperv-drm, that do not initialize connector polling, if suspend is called without this check, it leads to suspend failure with following stack [ 770.719392] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done. [ 770.720592] printk: Suspending console(s) (use no_console_suspend to debug) [ 770.948823] ------------[ cut here ]------------ [ 770.948824] WARNING: CPU: 1 PID: 17197 at kernel/workqueue.c:3162 __flush_work.isra.0+0x212/0x230 [ 770.948831] Modules linked in: rfkill nft_counter xt_conntrack xt_owner udf nft_compat crc_itu_t nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables nfnetlink vfat fat mlx5_ib ib_uverbs ib_core mlx5_core intel_rapl_msr intel_rapl_common kvm_amd ccp mlxfw kvm psample hyperv_drm tls drm_shmem_helper drm_kms_helper irqbypass pcspkr syscopyarea sysfillrect sysimgblt hv_balloon hv_utils joydev drm fuse xfs libcrc32c pci_hyperv pci_hyperv_intf sr_mod sd_mod cdrom t10_pi sg hv_storvsc scsi_transport_fc hv_netvsc serio_raw hyperv_keyboard hid_hyperv crct10dif_pclmul crc32_pclmul crc32c_intel hv_vmbus ghash_clmulni_intel dm_mirror dm_region_hash dm_log dm_mod [ 770.948863] CPU: 1 PID: 17197 Comm: systemd-sleep Not tainted 5.14.0-362.2.1.el9_3.x86_64 #1 [ 770.948865] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022 [ 770.948866] RIP: 0010:__flush_work.isra.0+0x212/0x230 [ 770.948869] Code: 8b 4d 00 4c 8b 45 08 89 ca 48 c1 e9 04 83 e2 08 83 e1 0f 83 ca 02 89 c8 48 0f ba 6d 00 03 e9 25 ff ff ff 0f 0b e9 4e ff ff ff <0f> 0b 45 31 ed e9 44 ff ff ff e8 8f 89 b2 00 66 66 2e 0f 1f 84 00 [ 770.948870] RSP: 0018:ffffaf4ac213fb10 EFLAGS: 00010246 [ 770.948871] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8c992857 [ 770.948872] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff9aad82b00330 [ 770.948873] RBP: ffff9aad82b00330 R08: 0000000000000000 R09: ffff9aad87ee3d10 [ 770.948874] R10: 0000000000000200 R11: 0000000000000000 R12: ffff9aad82b00330 [ 770.948874] R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001 [ 770.948875] FS: 00007ff1b2f6bb40(0000) GS:ffff9aaf37d00000(0000) knlGS:0000000000000000 [ 770.948878] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 770.948878] CR2: 0000555f345cb666 CR3: 00000001462dc005 CR4: 0000000000370ee0 [ 770.948879] Call Trace: [ 770.948880] <TASK> [ 770.948881] ? show_trace_log_lvl+0x1c4/0x2df [ 770.948884] ? show_trace_log_lvl+0x1c4/0x2df [ 770.948886] ? __cancel_work_timer+0x103/0x190 [ 770.948887] ? __flush_work.isra.0+0x212/0x230 [ 770.948889] ? __warn+0x81/0x110 [ 770.948891] ? __flush_work.isra.0+0x212/0x230 [ 770.948892] ? report_bug+0x10a/0x140 [ 770.948895] ? handle_bug+0x3c/0x70 [ 770.948898] ? exc_invalid_op+0x14/0x70 [ 770.948899] ? asm_exc_invalid_op+0x16/0x20 [ 770.948903] ? __flush_work.isra.0+0x212/0x230 [ 770.948905] __cancel_work_timer+0x103/0x190 [ 770.948907] ? _raw_spin_unlock_irqrestore+0xa/0x30 [ 770.948910] drm_kms_helper_poll_disable+0x1e/0x40 [drm_kms_helper] [ 770.948923] drm_mode_config_helper_suspend+0x1c/0x80 [drm_kms_helper] [ 770.948933] ? __pfx_vmbus_suspend+0x10/0x10 [hv_vmbus] [ 770.948942] hyperv_vmbus_suspend+0x17/0x40 [hyperv_drm] [ 770.948944] ? __pfx_vmbus_suspend+0x10/0x10 [hv_vmbus] [ 770.948951] dpm_run_callback+0x4c/0x140 [ 770.948954] __device_suspend_noir ---truncated---
CVE-2024-35926 In the Linux kernel, the following vulnerability has been resolved: crypto: iaa - Fix async_disable descriptor leak The disable_async paths of iaa_compress/decompress() don't free idxd descriptors in the async_disable case. Currently this only happens in the testcases where req->dst is set to null. Add a test to free them in those paths.
CVE-2024-35925 In the Linux kernel, the following vulnerability has been resolved: block: prevent division by zero in blk_rq_stat_sum() The expression dst->nr_samples + src->nr_samples may have zero value on overflow. It is necessary to add a check to avoid division by zero. Found by Linux Verification Center (linuxtesting.org) with Svace.
CVE-2024-35924 In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Limit read size on v1.2 Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was increased from 16 to 256. In order to avoid overflowing reads for older systems, add a mechanism to use the read UCSI version to truncate read sizes on UCSI v1.2.
CVE-2024-35922 In the Linux kernel, the following vulnerability has been resolved: fbmon: prevent division by zero in fb_videomode_from_videomode() The expression htotal * vtotal can have a zero value on overflow. It is necessary to prevent division by zero like in fb_var_to_videomode(). Found by Linux Verification Center (linuxtesting.org) with Svace.
CVE-2024-35921 In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Fix oops when HEVC init fails The stateless HEVC decoder saves the instance pointer in the context regardless if the initialization worked or not. This caused a use after free, when the pointer is freed in case of a failure in the deinit function. Only store the instance pointer when the initialization was successful, to solve this issue. Hardware name: Acer Tomato (rev3 - 4) board (DT) pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : vcodec_vpu_send_msg+0x4c/0x190 [mtk_vcodec_dec] lr : vcodec_send_ap_ipi+0x78/0x170 [mtk_vcodec_dec] sp : ffff80008750bc20 x29: ffff80008750bc20 x28: ffff1299f6d70000 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 x23: ffff80008750bc98 x22: 000000000000a003 x21: ffffd45c4cfae000 x20: 0000000000000010 x19: ffff1299fd668310 x18: 000000000000001a x17: 000000040044ffff x16: ffffd45cb15dc648 x15: 0000000000000000 x14: ffff1299c08da1c0 x13: ffffd45cb1f87a10 x12: ffffd45cb2f5fe80 x11: 0000000000000001 x10: 0000000000001b30 x9 : ffffd45c4d12b488 x8 : 1fffe25339380d81 x7 : 0000000000000001 x6 : ffff1299c9c06c00 x5 : 0000000000000132 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000010 x1 : ffff80008750bc98 x0 : 0000000000000000 Call trace: vcodec_vpu_send_msg+0x4c/0x190 [mtk_vcodec_dec] vcodec_send_ap_ipi+0x78/0x170 [mtk_vcodec_dec] vpu_dec_deinit+0x1c/0x30 [mtk_vcodec_dec] vdec_hevc_slice_deinit+0x30/0x98 [mtk_vcodec_dec] vdec_if_deinit+0x38/0x68 [mtk_vcodec_dec] mtk_vcodec_dec_release+0x20/0x40 [mtk_vcodec_dec] fops_vcodec_release+0x64/0x118 [mtk_vcodec_dec] v4l2_release+0x7c/0x100 __fput+0x80/0x2d8 __fput_sync+0x58/0x70 __arm64_sys_close+0x40/0x90 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0x48/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x38/0xd8 el0t_64_sync_handler+0xc0/0xc8 el0t_64_sync+0x1a8/0x1b0 Code: d503201f f9401660 b900127f b900227f (f9400400)
CVE-2024-35920 In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: adding lock to protect decoder context list Add a lock for the ctx_list, to avoid accessing a NULL pointer within the 'vpu_dec_ipi_handler' function when the ctx_list has been deleted due to an unexpected behavior on the SCP IP block. Hardware name: Google juniper sku16 board (DT) pstate: 20400005 (nzCv daif +PAN -UAO -TCO BTYPE=--) pc : vpu_dec_ipi_handler+0x58/0x1f8 [mtk_vcodec_dec] lr : scp_ipi_handler+0xd0/0x194 [mtk_scp] sp : ffffffc0131dbbd0 x29: ffffffc0131dbbd0 x28: 0000000000000000 x27: ffffff9bb277f348 x26: ffffff9bb242ad00 x25: ffffffd2d440d3b8 x24: ffffffd2a13ff1d4 x23: ffffff9bb7fe85a0 x22: ffffffc0133fbdb0 x21: 0000000000000010 x20: ffffff9b050ea328 x19: ffffffc0131dbc08 x18: 0000000000001000 x17: 0000000000000000 x16: ffffffd2d461c6e0 x15: 0000000000000242 x14: 000000000000018f x13: 000000000000004d x12: 0000000000000000 x11: 0000000000000001 x10: fffffffffffffff0 x9 : ffffff9bb6e793a8 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 000000000000003f x5 : 0000000000000040 x4 : fffffffffffffff0 x3 : 0000000000000020 x2 : ffffff9bb6e79080 x1 : 0000000000000010 x0 : ffffffc0131dbc08 Call trace: vpu_dec_ipi_handler+0x58/0x1f8 [mtk_vcodec_dec (HASH:6c3f 2)] scp_ipi_handler+0xd0/0x194 [mtk_scp (HASH:7046 3)] mt8183_scp_irq_handler+0x44/0x88 [mtk_scp (HASH:7046 3)] scp_irq_handler+0x48/0x90 [mtk_scp (HASH:7046 3)] irq_thread_fn+0x38/0x94 irq_thread+0x100/0x1c0 kthread+0x140/0x1fc ret_from_fork+0x10/0x30 Code: 54000088 f94ca50a eb14015f 54000060 (f9400108) ---[ end trace ace43ce36cbd5c93 ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs Kernel Offset: 0x12c4000000 from 0xffffffc010000000 PHYS_OFFSET: 0xffffffe580000000 CPU features: 0x08240002,2188200c Memory Limit: none
CVE-2024-35919 In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: adding lock to protect encoder context list Add a lock for the ctx_list, to avoid accessing a NULL pointer within the 'vpu_enc_ipi_handler' function when the ctx_list has been deleted due to an unexpected behavior on the SCP IP block.
CVE-2024-35918 In the Linux kernel, the following vulnerability has been resolved: randomize_kstack: Improve entropy diffusion The kstack_offset variable was really only ever using the low bits for kernel stack offset entropy. Add a ror32() to increase bit diffusion.
CVE-2024-35917 In the Linux kernel, the following vulnerability has been resolved: s390/bpf: Fix bpf_plt pointer arithmetic Kui-Feng Lee reported a crash on s390x triggered by the dummy_st_ops/dummy_init_ptr_arg test [1]: [<0000000000000002>] 0x2 [<00000000009d5cde>] bpf_struct_ops_test_run+0x156/0x250 [<000000000033145a>] __sys_bpf+0xa1a/0xd00 [<00000000003319dc>] __s390x_sys_bpf+0x44/0x50 [<0000000000c4382c>] __do_syscall+0x244/0x300 [<0000000000c59a40>] system_call+0x70/0x98 This is caused by GCC moving memcpy() after assignments in bpf_jit_plt(), resulting in NULL pointers being written instead of the return and the target addresses. Looking at the GCC internals, the reordering is allowed because the alias analysis thinks that the memcpy() destination and the assignments' left-hand-sides are based on different objects: new_plt and bpf_plt_ret/bpf_plt_target respectively, and therefore they cannot alias. This is in turn due to a violation of the C standard: When two pointers are subtracted, both shall point to elements of the same array object, or one past the last element of the array object ... From the C's perspective, bpf_plt_ret and bpf_plt are distinct objects and cannot be subtracted. In the practical terms, doing so confuses the GCC's alias analysis. The code was written this way in order to let the C side know a few offsets defined in the assembly. While nice, this is by no means necessary. Fix the noncompliance by hardcoding these offsets. [1] https://lore.kernel.org/bpf/c9923c1d-971d-4022-8dc8-1364e929d34c@gmail.com/
CVE-2024-35916 In the Linux kernel, the following vulnerability has been resolved: dma-buf: Fix NULL pointer dereference in sanitycheck() If due to a memory allocation failure mock_chain() returns NULL, it is passed to dma_fence_enable_sw_signaling() resulting in NULL pointer dereference there. Call dma_fence_enable_sw_signaling() only if mock_chain() succeeds. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-35915 In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix uninit-value in nci_dev_up and nci_ntf_packet syzbot reported the following uninit-value access issue [1][2]: nci_rx_work() parses and processes received packet. When the payload length is zero, each message type handler reads uninitialized payload and KMSAN detects this issue. The receipt of a packet with a zero-size payload is considered unexpected, and therefore, such packets should be silently discarded. This patch resolved this issue by checking payload size before calling each message type handler codes.
CVE-2024-35914 In the Linux kernel, the following vulnerability has been resolved: nfsd: Fix error cleanup path in nfsd_rename() Commit a8b0026847b8 ("rename(): avoid a deadlock in the case of parents having no common ancestor") added an error bail out path. However this path does not drop the remount protection that has been acquired. Fix the cleanup path to properly drop the remount protection.
CVE-2024-35913 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: pick the version of SESSION_PROTECTION_NOTIF When we want to know whether we should look for the mac_id or the link_id in struct iwl_mvm_session_prot_notif, we should look at the version of SESSION_PROTECTION_NOTIF. This causes WARNINGs: WARNING: CPU: 0 PID: 11403 at drivers/net/wireless/intel/iwlwifi/mvm/time-event.c:959 iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm] RIP: 0010:iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm] Code: 00 49 c7 84 24 48 07 00 00 00 00 00 00 41 c6 84 24 78 07 00 00 ff 4c 89 f7 e8 e9 71 54 d9 e9 7d fd ff ff 0f 0b e9 23 fe ff ff <0f> 0b e9 1c fe ff ff 66 0f 1f 44 00 00 90 90 90 90 90 90 90 90 90 RSP: 0018:ffffb4bb00003d40 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff9ae63a361000 RCX: ffff9ae4a98b60d4 RDX: ffff9ae4588499c0 RSI: 0000000000000305 RDI: ffff9ae4a98b6358 RBP: ffffb4bb00003d68 R08: 0000000000000003 R09: 0000000000000010 R10: ffffb4bb00003d00 R11: 000000000000000f R12: ffff9ae441399050 R13: ffff9ae4761329e8 R14: 0000000000000001 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff9ae7af400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055fb75680018 CR3: 00000003dae32006 CR4: 0000000000f70ef0 PKRU: 55555554 Call Trace: <IRQ> ? show_regs+0x69/0x80 ? __warn+0x8d/0x150 ? iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm] ? report_bug+0x196/0x1c0 ? handle_bug+0x45/0x80 ? exc_invalid_op+0x1c/0xb0 ? asm_exc_invalid_op+0x1f/0x30 ? iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm] iwl_mvm_rx_common+0x115/0x340 [iwlmvm] iwl_mvm_rx_mq+0xa6/0x100 [iwlmvm] iwl_pcie_rx_handle+0x263/0xa10 [iwlwifi] iwl_pcie_napi_poll_msix+0x32/0xd0 [iwlwifi]
CVE-2024-35912 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: rfi: fix potential response leaks If the rx payload length check fails, or if kmemdup() fails, we still need to free the command response. Fix that.
CVE-2024-35911 In the Linux kernel, the following vulnerability has been resolved: ice: fix memory corruption bug with suspend and rebuild The ice driver would previously panic after suspend. This is caused from the driver *only* calling the ice_vsi_free_q_vectors() function by itself, when it is suspending. Since commit b3e7b3a6ee92 ("ice: prevent NULL pointer deref during reload") the driver has zeroed out num_q_vectors, and only restored it in ice_vsi_cfg_def(). This further causes the ice_rebuild() function to allocate a zero length buffer, after which num_q_vectors is updated, and then the new value of num_q_vectors is used to index into the zero length buffer, which corrupts memory. The fix entails making sure all the code referencing num_q_vectors only does so after it has been reset via ice_vsi_cfg_def(). I didn't perform a full bisect, but I was able to test against 6.1.77 kernel and that ice driver works fine for suspend/resume with no panic, so sometime since then, this problem was introduced. Also clean up an un-needed init of a local variable in the function being modified. PANIC from 6.8.0-rc1: [1026674.915596] PM: suspend exit [1026675.664697] ice 0000:17:00.1: PTP reset successful [1026675.664707] ice 0000:17:00.1: 2755 msecs passed between update to cached PHC time [1026675.667660] ice 0000:b1:00.0: PTP reset successful [1026675.675944] ice 0000:b1:00.0: 2832 msecs passed between update to cached PHC time [1026677.137733] ixgbe 0000:31:00.0 ens787: NIC Link is Up 1 Gbps, Flow Control: None [1026677.190201] BUG: kernel NULL pointer dereference, address: 0000000000000010 [1026677.192753] ice 0000:17:00.0: PTP reset successful [1026677.192764] ice 0000:17:00.0: 4548 msecs passed between update to cached PHC time [1026677.197928] #PF: supervisor read access in kernel mode [1026677.197933] #PF: error_code(0x0000) - not-present page [1026677.197937] PGD 1557a7067 P4D 0 [1026677.212133] ice 0000:b1:00.1: PTP reset successful [1026677.212143] ice 0000:b1:00.1: 4344 msecs passed between update to cached PHC time [1026677.212575] [1026677.243142] Oops: 0000 [#1] PREEMPT SMP NOPTI [1026677.247918] CPU: 23 PID: 42790 Comm: kworker/23:0 Kdump: loaded Tainted: G W 6.8.0-rc1+ #1 [1026677.257989] Hardware name: Intel Corporation M50CYP2SBSTD/M50CYP2SBSTD, BIOS SE5C620.86B.01.01.0005.2202160810 02/16/2022 [1026677.269367] Workqueue: ice ice_service_task [ice] [1026677.274592] RIP: 0010:ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice] [1026677.281421] Code: 0f 84 3a ff ff ff 41 0f b7 74 ec 02 66 89 b0 22 02 00 00 81 e6 ff 1f 00 00 e8 ec fd ff ff e9 35 ff ff ff 48 8b 43 30 49 63 ed <41> 0f b7 34 24 41 83 c5 01 48 8b 3c e8 66 89 b7 aa 02 00 00 81 e6 [1026677.300877] RSP: 0018:ff3be62a6399bcc0 EFLAGS: 00010202 [1026677.306556] RAX: ff28691e28980828 RBX: ff28691e41099828 RCX: 0000000000188000 [1026677.314148] RDX: 0000000000000000 RSI: 0000000000000010 RDI: ff28691e41099828 [1026677.321730] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 [1026677.329311] R10: 0000000000000007 R11: ffffffffffffffc0 R12: 0000000000000010 [1026677.336896] R13: 0000000000000000 R14: 0000000000000000 R15: ff28691e0eaa81a0 [1026677.344472] FS: 0000000000000000(0000) GS:ff28693cbffc0000(0000) knlGS:0000000000000000 [1026677.353000] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1026677.359195] CR2: 0000000000000010 CR3: 0000000128df4001 CR4: 0000000000771ef0 [1026677.366779] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [1026677.374369] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [1026677.381952] PKRU: 55555554 [1026677.385116] Call Trace: [1026677.388023] <TASK> [1026677.390589] ? __die+0x20/0x70 [1026677.394105] ? page_fault_oops+0x82/0x160 [1026677.398576] ? do_user_addr_fault+0x65/0x6a0 [1026677.403307] ? exc_page_fault+0x6a/0x150 [1026677.407694] ? asm_exc_page_fault+0x22/0x30 [1026677.412349] ? ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice] [1026677.4186 ---truncated---
CVE-2024-35910 In the Linux kernel, the following vulnerability has been resolved: tcp: properly terminate timers for kernel sockets We had various syzbot reports about tcp timers firing after the corresponding netns has been dismantled. Fortunately Josef Bacik could trigger the issue more often, and could test a patch I wrote two years ago. When TCP sockets are closed, we call inet_csk_clear_xmit_timers() to 'stop' the timers. inet_csk_clear_xmit_timers() can be called from any context, including when socket lock is held. This is the reason it uses sk_stop_timer(), aka del_timer(). This means that ongoing timers might finish much later. For user sockets, this is fine because each running timer holds a reference on the socket, and the user socket holds a reference on the netns. For kernel sockets, we risk that the netns is freed before timer can complete, because kernel sockets do not hold reference on the netns. This patch adds inet_csk_clear_xmit_timers_sync() function that using sk_stop_timer_sync() to make sure all timers are terminated before the kernel socket is released. Modules using kernel sockets close them in their netns exit() handler. Also add sock_not_owned_by_me() helper to get LOCKDEP support : inet_csk_clear_xmit_timers_sync() must not be called while socket lock is held. It is very possible we can revert in the future commit 3a58f13a881e ("net: rds: acquire refcount on TCP sockets") which attempted to solve the issue in rds only. (net/smc/af_smc.c and net/mptcp/subflow.c have similar code) We probably can remove the check_net() tests from tcp_out_of_resources() and __tcp_close() in the future.
CVE-2024-35909 In the Linux kernel, the following vulnerability has been resolved: net: wwan: t7xx: Split 64bit accesses to fix alignment issues Some of the registers are aligned on a 32bit boundary, causing alignment faults on 64bit platforms. Unable to handle kernel paging request at virtual address ffffffc084a1d004 Mem abort info: ESR = 0x0000000096000061 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x21: alignment fault Data abort info: ISV = 0, ISS = 0x00000061, ISS2 = 0x00000000 CM = 0, WnR = 1, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000046ad6000 [ffffffc084a1d004] pgd=100000013ffff003, p4d=100000013ffff003, pud=100000013ffff003, pmd=0068000020a00711 Internal error: Oops: 0000000096000061 [#1] SMP Modules linked in: mtk_t7xx(+) qcserial pppoe ppp_async option nft_fib_inet nf_flow_table_inet mt7921u(O) mt7921s(O) mt7921e(O) mt7921_common(O) iwlmvm(O) iwldvm(O) usb_wwan rndis_host qmi_wwan pppox ppp_generic nft_reject_ipv6 nft_reject_ipv4 nft_reject_inet nft_reject nft_redir nft_quota nft_numgen nft_nat nft_masq nft_log nft_limit nft_hash nft_flow_offload nft_fib_ipv6 nft_fib_ipv4 nft_fib nft_ct nft_chain_nat nf_tables nf_nat nf_flow_table nf_conntrack mt7996e(O) mt792x_usb(O) mt792x_lib(O) mt7915e(O) mt76_usb(O) mt76_sdio(O) mt76_connac_lib(O) mt76(O) mac80211(O) iwlwifi(O) huawei_cdc_ncm cfg80211(O) cdc_ncm cdc_ether wwan usbserial usbnet slhc sfp rtc_pcf8563 nfnetlink nf_reject_ipv6 nf_reject_ipv4 nf_log_syslog nf_defrag_ipv6 nf_defrag_ipv4 mt6577_auxadc mdio_i2c libcrc32c compat(O) cdc_wdm cdc_acm at24 crypto_safexcel pwm_fan i2c_gpio i2c_smbus industrialio i2c_algo_bit i2c_mux_reg i2c_mux_pca954x i2c_mux_pca9541 i2c_mux_gpio i2c_mux dummy oid_registry tun sha512_arm64 sha1_ce sha1_generic seqiv md5 geniv des_generic libdes cbc authencesn authenc leds_gpio xhci_plat_hcd xhci_pci xhci_mtk_hcd xhci_hcd nvme nvme_core gpio_button_hotplug(O) dm_mirror dm_region_hash dm_log dm_crypt dm_mod dax usbcore usb_common ptp aquantia pps_core mii tpm encrypted_keys trusted CPU: 3 PID: 5266 Comm: kworker/u9:1 Tainted: G O 6.6.22 #0 Hardware name: Bananapi BPI-R4 (DT) Workqueue: md_hk_wq t7xx_fsm_uninit [mtk_t7xx] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : t7xx_cldma_hw_set_start_addr+0x1c/0x3c [mtk_t7xx] lr : t7xx_cldma_start+0xac/0x13c [mtk_t7xx] sp : ffffffc085d63d30 x29: ffffffc085d63d30 x28: 0000000000000000 x27: 0000000000000000 x26: 0000000000000000 x25: ffffff80c804f2c0 x24: ffffff80ca196c05 x23: 0000000000000000 x22: ffffff80c814b9b8 x21: ffffff80c814b128 x20: 0000000000000001 x19: ffffff80c814b080 x18: 0000000000000014 x17: 0000000055c9806b x16: 000000007c5296d0 x15: 000000000f6bca68 x14: 00000000dbdbdce4 x13: 000000001aeaf72a x12: 0000000000000001 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : ffffff80ca1ef6b4 x7 : ffffff80c814b818 x6 : 0000000000000018 x5 : 0000000000000870 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 000000010a947000 x1 : ffffffc084a1d004 x0 : ffffffc084a1d004 Call trace: t7xx_cldma_hw_set_start_addr+0x1c/0x3c [mtk_t7xx] t7xx_fsm_uninit+0x578/0x5ec [mtk_t7xx] process_one_work+0x154/0x2a0 worker_thread+0x2ac/0x488 kthread+0xe0/0xec ret_from_fork+0x10/0x20 Code: f9400800 91001000 8b214001 d50332bf (f9000022) ---[ end trace 0000000000000000 ]--- The inclusion of io-64-nonatomic-lo-hi.h indicates that all 64bit accesses can be replaced by pairs of nonatomic 32bit access. Fix alignment by forcing all accesses to be 32bit on 64bit platforms.
CVE-2024-35908 In the Linux kernel, the following vulnerability has been resolved: tls: get psock ref after taking rxlock to avoid leak At the start of tls_sw_recvmsg, we take a reference on the psock, and then call tls_rx_reader_lock. If that fails, we return directly without releasing the reference. Instead of adding a new label, just take the reference after locking has succeeded, since we don't need it before.
CVE-2024-35907 In the Linux kernel, the following vulnerability has been resolved: mlxbf_gige: call request_irq() after NAPI initialized The mlxbf_gige driver encounters a NULL pointer exception in mlxbf_gige_open() when kdump is enabled. The sequence to reproduce the exception is as follows: a) enable kdump b) trigger kdump via "echo c > /proc/sysrq-trigger" c) kdump kernel executes d) kdump kernel loads mlxbf_gige module e) the mlxbf_gige module runs its open() as the the "oob_net0" interface is brought up f) mlxbf_gige module will experience an exception during its open(), something like: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Mem abort info: ESR = 0x0000000086000004 EC = 0x21: IABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault user pgtable: 4k pages, 48-bit VAs, pgdp=00000000e29a4000 [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000086000004 [#1] SMP CPU: 0 PID: 812 Comm: NetworkManager Tainted: G OE 5.15.0-1035-bluefield #37-Ubuntu Hardware name: https://www.mellanox.com BlueField-3 SmartNIC Main Card/BlueField-3 SmartNIC Main Card, BIOS 4.6.0.13024 Jan 19 2024 pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : 0x0 lr : __napi_poll+0x40/0x230 sp : ffff800008003e00 x29: ffff800008003e00 x28: 0000000000000000 x27: 00000000ffffffff x26: ffff000066027238 x25: ffff00007cedec00 x24: ffff800008003ec8 x23: 000000000000012c x22: ffff800008003eb7 x21: 0000000000000000 x20: 0000000000000001 x19: ffff000066027238 x18: 0000000000000000 x17: ffff578fcb450000 x16: ffffa870b083c7c0 x15: 0000aaab010441d0 x14: 0000000000000001 x13: 00726f7272655f65 x12: 6769675f6662786c x11: 0000000000000000 x10: 0000000000000000 x9 : ffffa870b0842398 x8 : 0000000000000004 x7 : fe5a48b9069706ea x6 : 17fdb11fc84ae0d2 x5 : d94a82549d594f35 x4 : 0000000000000000 x3 : 0000000000400100 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff000066027238 Call trace: 0x0 net_rx_action+0x178/0x360 __do_softirq+0x15c/0x428 __irq_exit_rcu+0xac/0xec irq_exit+0x18/0x2c handle_domain_irq+0x6c/0xa0 gic_handle_irq+0xec/0x1b0 call_on_irq_stack+0x20/0x2c do_interrupt_handler+0x5c/0x70 el1_interrupt+0x30/0x50 el1h_64_irq_handler+0x18/0x2c el1h_64_irq+0x7c/0x80 __setup_irq+0x4c0/0x950 request_threaded_irq+0xf4/0x1bc mlxbf_gige_request_irqs+0x68/0x110 [mlxbf_gige] mlxbf_gige_open+0x5c/0x170 [mlxbf_gige] __dev_open+0x100/0x220 __dev_change_flags+0x16c/0x1f0 dev_change_flags+0x2c/0x70 do_setlink+0x220/0xa40 __rtnl_newlink+0x56c/0x8a0 rtnl_newlink+0x58/0x84 rtnetlink_rcv_msg+0x138/0x3c4 netlink_rcv_skb+0x64/0x130 rtnetlink_rcv+0x20/0x30 netlink_unicast+0x2ec/0x360 netlink_sendmsg+0x278/0x490 __sock_sendmsg+0x5c/0x6c ____sys_sendmsg+0x290/0x2d4 ___sys_sendmsg+0x84/0xd0 __sys_sendmsg+0x70/0xd0 __arm64_sys_sendmsg+0x2c/0x40 invoke_syscall+0x78/0x100 el0_svc_common.constprop.0+0x54/0x184 do_el0_svc+0x30/0xac el0_svc+0x48/0x160 el0t_64_sync_handler+0xa4/0x12c el0t_64_sync+0x1a4/0x1a8 Code: bad PC value ---[ end trace 7d1c3f3bf9d81885 ]--- Kernel panic - not syncing: Oops: Fatal exception in interrupt Kernel Offset: 0x2870a7a00000 from 0xffff800008000000 PHYS_OFFSET: 0x80000000 CPU features: 0x0,000005c1,a3332a5a Memory Limit: none ---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]--- The exception happens because there is a pending RX interrupt before the call to request_irq(RX IRQ) executes. Then, the RX IRQ handler fires immediately after this request_irq() completes. The ---truncated---
CVE-2024-35905 In the Linux kernel, the following vulnerability has been resolved: bpf: Protect against int overflow for stack access size This patch re-introduces protection against the size of access to stack memory being negative; the access size can appear negative as a result of overflowing its signed int representation. This should not actually happen, as there are other protections along the way, but we should protect against it anyway. One code path was missing such protections (fixed in the previous patch in the series), causing out-of-bounds array accesses in check_stack_range_initialized(). This patch causes the verification of a program with such a non-sensical access size to fail. This check used to exist in a more indirect way, but was inadvertendly removed in a833a17aeac7.
CVE-2024-35904 In the Linux kernel, the following vulnerability has been resolved: selinux: avoid dereference of garbage after mount failure In case kern_mount() fails and returns an error pointer return in the error branch instead of continuing and dereferencing the error pointer. While on it drop the never read static variable selinuxfs_mount.
CVE-2024-35903 In the Linux kernel, the following vulnerability has been resolved: x86/bpf: Fix IP after emitting call depth accounting Adjust the IP passed to `emit_patch` so it calculates the correct offset for the CALL instruction if `x86_call_depth_emit_accounting` emits code. Otherwise we will skip some instructions and most likely crash.
CVE-2024-35902 In the Linux kernel, the following vulnerability has been resolved: net/rds: fix possible cp null dereference cp might be null, calling cp->cp_conn would produce null dereference [Simon Horman adds:] Analysis: * cp is a parameter of __rds_rdma_map and is not reassigned. * The following call-sites pass a NULL cp argument to __rds_rdma_map() - rds_get_mr() - rds_get_mr_for_dest * Prior to the code above, the following assumes that cp may be NULL (which is indicative, but could itself be unnecessary) trans_private = rs->rs_transport->get_mr( sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL, args->vec.addr, args->vec.bytes, need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED); * The code modified by this patch is guarded by IS_ERR(trans_private), where trans_private is assigned as per the previous point in this analysis. The only implementation of get_mr that I could locate is rds_ib_get_mr() which can return an ERR_PTR if the conn (4th) argument is NULL. * ret is set to PTR_ERR(trans_private). rds_ib_get_mr can return ERR_PTR(-ENODEV) if the conn (4th) argument is NULL. Thus ret may be -ENODEV in which case the code in question will execute. Conclusion: * cp may be NULL at the point where this patch adds a check; this patch does seem to address a possible bug
CVE-2024-35901 In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix Rx DMA datasize and skb_over_panic mana_get_rxbuf_cfg() aligns the RX buffer's DMA datasize to be multiple of 64. So a packet slightly bigger than mtu+14, say 1536, can be received and cause skb_over_panic. Sample dmesg: [ 5325.237162] skbuff: skb_over_panic: text:ffffffffc043277a len:1536 put:1536 head:ff1100018b517000 data:ff1100018b517100 tail:0x700 end:0x6ea dev:<NULL> [ 5325.243689] ------------[ cut here ]------------ [ 5325.245748] kernel BUG at net/core/skbuff.c:192! [ 5325.247838] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 5325.258374] RIP: 0010:skb_panic+0x4f/0x60 [ 5325.302941] Call Trace: [ 5325.304389] <IRQ> [ 5325.315794] ? skb_panic+0x4f/0x60 [ 5325.317457] ? asm_exc_invalid_op+0x1f/0x30 [ 5325.319490] ? skb_panic+0x4f/0x60 [ 5325.321161] skb_put+0x4e/0x50 [ 5325.322670] mana_poll+0x6fa/0xb50 [mana] [ 5325.324578] __napi_poll+0x33/0x1e0 [ 5325.326328] net_rx_action+0x12e/0x280 As discussed internally, this alignment is not necessary. To fix this bug, remove it from the code. So oversized packets will be marked as CQE_RX_TRUNCATED by NIC, and dropped.
CVE-2024-35900 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: reject new basechain after table flag update When dormant flag is toggled, hooks are disabled in the commit phase by iterating over current chains in table (existing and new). The following configuration allows for an inconsistent state: add table x add chain x y { type filter hook input priority 0; } add table x { flags dormant; } add chain x w { type filter hook input priority 1; } which triggers the following warning when trying to unregister chain w which is already unregistered. [ 127.322252] WARNING: CPU: 7 PID: 1211 at net/netfilter/core.c:50 1 __nf_unregister_net_hook+0x21a/0x260 [...] [ 127.322519] Call Trace: [ 127.322521] <TASK> [ 127.322524] ? __warn+0x9f/0x1a0 [ 127.322531] ? __nf_unregister_net_hook+0x21a/0x260 [ 127.322537] ? report_bug+0x1b1/0x1e0 [ 127.322545] ? handle_bug+0x3c/0x70 [ 127.322552] ? exc_invalid_op+0x17/0x40 [ 127.322556] ? asm_exc_invalid_op+0x1a/0x20 [ 127.322563] ? kasan_save_free_info+0x3b/0x60 [ 127.322570] ? __nf_unregister_net_hook+0x6a/0x260 [ 127.322577] ? __nf_unregister_net_hook+0x21a/0x260 [ 127.322583] ? __nf_unregister_net_hook+0x6a/0x260 [ 127.322590] ? __nf_tables_unregister_hook+0x8a/0xe0 [nf_tables] [ 127.322655] nft_table_disable+0x75/0xf0 [nf_tables] [ 127.322717] nf_tables_commit+0x2571/0x2620 [nf_tables]
CVE-2024-35899 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: flush pending destroy work before exit_net release Similar to 2c9f0293280e ("netfilter: nf_tables: flush pending destroy work before netlink notifier") to address a race between exit_net and the destroy workqueue. The trace below shows an element to be released via destroy workqueue while exit_net path (triggered via module removal) has already released the set that is used in such transaction. [ 1360.547789] BUG: KASAN: slab-use-after-free in nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.547861] Read of size 8 at addr ffff888140500cc0 by task kworker/4:1/152465 [ 1360.547870] CPU: 4 PID: 152465 Comm: kworker/4:1 Not tainted 6.8.0+ #359 [ 1360.547882] Workqueue: events nf_tables_trans_destroy_work [nf_tables] [ 1360.547984] Call Trace: [ 1360.547991] <TASK> [ 1360.547998] dump_stack_lvl+0x53/0x70 [ 1360.548014] print_report+0xc4/0x610 [ 1360.548026] ? __virt_addr_valid+0xba/0x160 [ 1360.548040] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 1360.548054] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548176] kasan_report+0xae/0xe0 [ 1360.548189] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548312] nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548447] ? __pfx_nf_tables_trans_destroy_work+0x10/0x10 [nf_tables] [ 1360.548577] ? _raw_spin_unlock_irq+0x18/0x30 [ 1360.548591] process_one_work+0x2f1/0x670 [ 1360.548610] worker_thread+0x4d3/0x760 [ 1360.548627] ? __pfx_worker_thread+0x10/0x10 [ 1360.548640] kthread+0x16b/0x1b0 [ 1360.548653] ? __pfx_kthread+0x10/0x10 [ 1360.548665] ret_from_fork+0x2f/0x50 [ 1360.548679] ? __pfx_kthread+0x10/0x10 [ 1360.548690] ret_from_fork_asm+0x1a/0x30 [ 1360.548707] </TASK> [ 1360.548719] Allocated by task 192061: [ 1360.548726] kasan_save_stack+0x20/0x40 [ 1360.548739] kasan_save_track+0x14/0x30 [ 1360.548750] __kasan_kmalloc+0x8f/0xa0 [ 1360.548760] __kmalloc_node+0x1f1/0x450 [ 1360.548771] nf_tables_newset+0x10c7/0x1b50 [nf_tables] [ 1360.548883] nfnetlink_rcv_batch+0xbc4/0xdc0 [nfnetlink] [ 1360.548909] nfnetlink_rcv+0x1a8/0x1e0 [nfnetlink] [ 1360.548927] netlink_unicast+0x367/0x4f0 [ 1360.548935] netlink_sendmsg+0x34b/0x610 [ 1360.548944] ____sys_sendmsg+0x4d4/0x510 [ 1360.548953] ___sys_sendmsg+0xc9/0x120 [ 1360.548961] __sys_sendmsg+0xbe/0x140 [ 1360.548971] do_syscall_64+0x55/0x120 [ 1360.548982] entry_SYSCALL_64_after_hwframe+0x55/0x5d [ 1360.548994] Freed by task 192222: [ 1360.548999] kasan_save_stack+0x20/0x40 [ 1360.549009] kasan_save_track+0x14/0x30 [ 1360.549019] kasan_save_free_info+0x3b/0x60 [ 1360.549028] poison_slab_object+0x100/0x180 [ 1360.549036] __kasan_slab_free+0x14/0x30 [ 1360.549042] kfree+0xb6/0x260 [ 1360.549049] __nft_release_table+0x473/0x6a0 [nf_tables] [ 1360.549131] nf_tables_exit_net+0x170/0x240 [nf_tables] [ 1360.549221] ops_exit_list+0x50/0xa0 [ 1360.549229] free_exit_list+0x101/0x140 [ 1360.549236] unregister_pernet_operations+0x107/0x160 [ 1360.549245] unregister_pernet_subsys+0x1c/0x30 [ 1360.549254] nf_tables_module_exit+0x43/0x80 [nf_tables] [ 1360.549345] __do_sys_delete_module+0x253/0x370 [ 1360.549352] do_syscall_64+0x55/0x120 [ 1360.549360] entry_SYSCALL_64_after_hwframe+0x55/0x5d (gdb) list *__nft_release_table+0x473 0x1e033 is in __nft_release_table (net/netfilter/nf_tables_api.c:11354). 11349 list_for_each_entry_safe(flowtable, nf, &table->flowtables, list) { 11350 list_del(&flowtable->list); 11351 nft_use_dec(&table->use); 11352 nf_tables_flowtable_destroy(flowtable); 11353 } 11354 list_for_each_entry_safe(set, ns, &table->sets, list) { 11355 list_del(&set->list); 11356 nft_use_dec(&table->use); 11357 if (set->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) 11358 nft_map_deactivat ---truncated---
CVE-2024-35898 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get() nft_unregister_flowtable_type() within nf_flow_inet_module_exit() can concurrent with __nft_flowtable_type_get() within nf_tables_newflowtable(). And thhere is not any protection when iterate over nf_tables_flowtables list in __nft_flowtable_type_get(). Therefore, there is pertential data-race of nf_tables_flowtables list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_flowtables list in __nft_flowtable_type_get(), and use rcu_read_lock() in the caller nft_flowtable_type_get() to protect the entire type query process.
CVE-2024-35897 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: discard table flag update with pending basechain deletion Hook unregistration is deferred to the commit phase, same occurs with hook updates triggered by the table dormant flag. When both commands are combined, this results in deleting a basechain while leaving its hook still registered in the core.
CVE-2024-35896 In the Linux kernel, the following vulnerability has been resolved: netfilter: validate user input for expected length I got multiple syzbot reports showing old bugs exposed by BPF after commit 20f2505fb436 ("bpf: Try to avoid kzalloc in cgroup/{s,g}etsockopt") setsockopt() @optlen argument should be taken into account before copying data. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238 CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 kasan_check_range+0x282/0x290 mm/kasan/generic.c:189 __asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105 copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] copy_from_sockptr include/linux/sockptr.h:55 [inline] do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101 do_sock_setsockopt+0x3af/0x720 net/socket.c:2311 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a RIP: 0033:0x7fd22067dde9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9 RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000 R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8 </TASK> Allocated by task 7238: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:370 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:4069 [inline] __kmalloc_noprof+0x200/0x410 mm/slub.c:4082 kmalloc_noprof include/linux/slab.h:664 [inline] __cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869 do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a The buggy address belongs to the object at ffff88802cd73da0 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 0 bytes inside of allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73 flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff) page_type: 0xffffefff(slab) raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122 raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00 ---truncated---
CVE-2024-35895 In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Prevent lock inversion deadlock in map delete elem syzkaller started using corpuses where a BPF tracing program deletes elements from a sockmap/sockhash map. Because BPF tracing programs can be invoked from any interrupt context, locks taken during a map_delete_elem operation must be hardirq-safe. Otherwise a deadlock due to lock inversion is possible, as reported by lockdep: CPU0 CPU1 ---- ---- lock(&htab->buckets[i].lock); local_irq_disable(); lock(&host->lock); lock(&htab->buckets[i].lock); <Interrupt> lock(&host->lock); Locks in sockmap are hardirq-unsafe by design. We expects elements to be deleted from sockmap/sockhash only in task (normal) context with interrupts enabled, or in softirq context. Detect when map_delete_elem operation is invoked from a context which is _not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an error. Note that map updates are not affected by this issue. BPF verifier does not allow updating sockmap/sockhash from a BPF tracing program today.
CVE-2024-35894 In the Linux kernel, the following vulnerability has been resolved: mptcp: prevent BPF accessing lowat from a subflow socket. Alexei reported the following splat: WARNING: CPU: 32 PID: 3276 at net/mptcp/subflow.c:1430 subflow_data_ready+0x147/0x1c0 Modules linked in: dummy bpf_testmod(O) [last unloaded: bpf_test_no_cfi(O)] CPU: 32 PID: 3276 Comm: test_progs Tainted: GO 6.8.0-12873-g2c43c33bfd23 Call Trace: <TASK> mptcp_set_rcvlowat+0x79/0x1d0 sk_setsockopt+0x6c0/0x1540 __bpf_setsockopt+0x6f/0x90 bpf_sock_ops_setsockopt+0x3c/0x90 bpf_prog_509ce5db2c7f9981_bpf_test_sockopt_int+0xb4/0x11b bpf_prog_dce07e362d941d2b_bpf_test_socket_sockopt+0x12b/0x132 bpf_prog_348c9b5faaf10092_skops_sockopt+0x954/0xe86 __cgroup_bpf_run_filter_sock_ops+0xbc/0x250 tcp_connect+0x879/0x1160 tcp_v6_connect+0x50c/0x870 mptcp_connect+0x129/0x280 __inet_stream_connect+0xce/0x370 inet_stream_connect+0x36/0x50 bpf_trampoline_6442491565+0x49/0xef inet_stream_connect+0x5/0x50 __sys_connect+0x63/0x90 __x64_sys_connect+0x14/0x20 The root cause of the issue is that bpf allows accessing mptcp-level proto_ops from a tcp subflow scope. Fix the issue detecting the problematic call and preventing any action.
CVE-2024-35893 In the Linux kernel, the following vulnerability has been resolved: net/sched: act_skbmod: prevent kernel-infoleak syzbot found that tcf_skbmod_dump() was copying four bytes from kernel stack to user space [1]. The issue here is that 'struct tc_skbmod' has a four bytes hole. We need to clear the structure before filling fields. [1] BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in copy_to_user_iter lib/iov_iter.c:24 [inline] BUG: KMSAN: kernel-infoleak in iterate_ubuf include/linux/iov_iter.h:29 [inline] BUG: KMSAN: kernel-infoleak in iterate_and_advance2 include/linux/iov_iter.h:245 [inline] BUG: KMSAN: kernel-infoleak in iterate_and_advance include/linux/iov_iter.h:271 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185 instrument_copy_to_user include/linux/instrumented.h:114 [inline] copy_to_user_iter lib/iov_iter.c:24 [inline] iterate_ubuf include/linux/iov_iter.h:29 [inline] iterate_and_advance2 include/linux/iov_iter.h:245 [inline] iterate_and_advance include/linux/iov_iter.h:271 [inline] _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185 copy_to_iter include/linux/uio.h:196 [inline] simple_copy_to_iter net/core/datagram.c:532 [inline] __skb_datagram_iter+0x185/0x1000 net/core/datagram.c:420 skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546 skb_copy_datagram_msg include/linux/skbuff.h:4050 [inline] netlink_recvmsg+0x432/0x1610 net/netlink/af_netlink.c:1962 sock_recvmsg_nosec net/socket.c:1046 [inline] sock_recvmsg+0x2c4/0x340 net/socket.c:1068 __sys_recvfrom+0x35a/0x5f0 net/socket.c:2242 __do_sys_recvfrom net/socket.c:2260 [inline] __se_sys_recvfrom net/socket.c:2256 [inline] __x64_sys_recvfrom+0x126/0x1d0 net/socket.c:2256 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was stored to memory at: pskb_expand_head+0x30f/0x19d0 net/core/skbuff.c:2253 netlink_trim+0x2c2/0x330 net/netlink/af_netlink.c:1317 netlink_unicast+0x9f/0x1260 net/netlink/af_netlink.c:1351 nlmsg_unicast include/net/netlink.h:1144 [inline] nlmsg_notify+0x21d/0x2f0 net/netlink/af_netlink.c:2610 rtnetlink_send+0x73/0x90 net/core/rtnetlink.c:741 rtnetlink_maybe_send include/linux/rtnetlink.h:17 [inline] tcf_add_notify net/sched/act_api.c:2048 [inline] tcf_action_add net/sched/act_api.c:2071 [inline] tc_ctl_action+0x146e/0x19d0 net/sched/act_api.c:2119 rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595 netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2559 rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6613 netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline] netlink_unicast+0xf4c/0x1260 net/netlink/af_netlink.c:1361 netlink_sendmsg+0x10df/0x11f0 net/netlink/af_netlink.c:1905 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 ____sys_sendmsg+0x877/0xb60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x4a0 net/socket.c:2674 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was stored to memory at: __nla_put lib/nlattr.c:1041 [inline] nla_put+0x1c6/0x230 lib/nlattr.c:1099 tcf_skbmod_dump+0x23f/0xc20 net/sched/act_skbmod.c:256 tcf_action_dump_old net/sched/act_api.c:1191 [inline] tcf_action_dump_1+0x85e/0x970 net/sched/act_api.c:1227 tcf_action_dump+0x1fd/0x460 net/sched/act_api.c:1251 tca_get_fill+0x519/0x7a0 net/sched/act_api.c:1628 tcf_add_notify_msg net/sched/act_api.c:2023 [inline] tcf_add_notify net/sched/act_api.c:2042 [inline] tcf_action_add net/sched/act_api.c:2071 [inline] tc_ctl_action+0x1365/0x19d0 net/sched/act_api.c:2119 rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595 netlink_rcv_skb+0x375/0x650 net/netlink/af_netli ---truncated---
CVE-2024-35892 In the Linux kernel, the following vulnerability has been resolved: net/sched: fix lockdep splat in qdisc_tree_reduce_backlog() qdisc_tree_reduce_backlog() is called with the qdisc lock held, not RTNL. We must use qdisc_lookup_rcu() instead of qdisc_lookup() syzbot reported: WARNING: suspicious RCU usage 6.1.74-syzkaller #0 Not tainted ----------------------------- net/sched/sch_api.c:305 suspicious rcu_dereference_protected() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 3 locks held by udevd/1142: #0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:306 [inline] #0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:747 [inline] #0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: net_tx_action+0x64a/0x970 net/core/dev.c:5282 #1: ffff888171861108 (&sch->q.lock){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:350 [inline] #1: ffff888171861108 (&sch->q.lock){+.-.}-{2:2}, at: net_tx_action+0x754/0x970 net/core/dev.c:5297 #2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:306 [inline] #2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:747 [inline] #2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: qdisc_tree_reduce_backlog+0x84/0x580 net/sched/sch_api.c:792 stack backtrace: CPU: 1 PID: 1142 Comm: udevd Not tainted 6.1.74-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Call Trace: <TASK> [<ffffffff85b85f14>] __dump_stack lib/dump_stack.c:88 [inline] [<ffffffff85b85f14>] dump_stack_lvl+0x1b1/0x28f lib/dump_stack.c:106 [<ffffffff85b86007>] dump_stack+0x15/0x1e lib/dump_stack.c:113 [<ffffffff81802299>] lockdep_rcu_suspicious+0x1b9/0x260 kernel/locking/lockdep.c:6592 [<ffffffff84f0054c>] qdisc_lookup+0xac/0x6f0 net/sched/sch_api.c:305 [<ffffffff84f037c3>] qdisc_tree_reduce_backlog+0x243/0x580 net/sched/sch_api.c:811 [<ffffffff84f5b78c>] pfifo_tail_enqueue+0x32c/0x4b0 net/sched/sch_fifo.c:51 [<ffffffff84fbcf63>] qdisc_enqueue include/net/sch_generic.h:833 [inline] [<ffffffff84fbcf63>] netem_dequeue+0xeb3/0x15d0 net/sched/sch_netem.c:723 [<ffffffff84eecab9>] dequeue_skb net/sched/sch_generic.c:292 [inline] [<ffffffff84eecab9>] qdisc_restart net/sched/sch_generic.c:397 [inline] [<ffffffff84eecab9>] __qdisc_run+0x249/0x1e60 net/sched/sch_generic.c:415 [<ffffffff84d7aa96>] qdisc_run+0xd6/0x260 include/net/pkt_sched.h:125 [<ffffffff84d85d29>] net_tx_action+0x7c9/0x970 net/core/dev.c:5313 [<ffffffff85e002bd>] __do_softirq+0x2bd/0x9bd kernel/softirq.c:616 [<ffffffff81568bca>] invoke_softirq kernel/softirq.c:447 [inline] [<ffffffff81568bca>] __irq_exit_rcu+0xca/0x230 kernel/softirq.c:700 [<ffffffff81568ae9>] irq_exit_rcu+0x9/0x20 kernel/softirq.c:712 [<ffffffff85b89f52>] sysvec_apic_timer_interrupt+0x42/0x90 arch/x86/kernel/apic/apic.c:1107 [<ffffffff85c00ccb>] asm_sysvec_apic_timer_interrupt+0x1b/0x20 arch/x86/include/asm/idtentry.h:656
CVE-2024-35891 In the Linux kernel, the following vulnerability has been resolved: net: phy: micrel: Fix potential null pointer dereference In lan8814_get_sig_rx() and lan8814_get_sig_tx() ptp_parse_header() may return NULL as ptp_header due to abnormal packet type or corrupted packet. Fix this bug by adding ptp_header check. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-35890 In the Linux kernel, the following vulnerability has been resolved: gro: fix ownership transfer If packets are GROed with fraglist they might be segmented later on and continue their journey in the stack. In skb_segment_list those skbs can be reused as-is. This is an issue as their destructor was removed in skb_gro_receive_list but not the reference to their socket, and then they can't be orphaned. Fix this by also removing the reference to the socket. For example this could be observed, kernel BUG at include/linux/skbuff.h:3131! (skb_orphan) RIP: 0010:ip6_rcv_core+0x11bc/0x19a0 Call Trace: ipv6_list_rcv+0x250/0x3f0 __netif_receive_skb_list_core+0x49d/0x8f0 netif_receive_skb_list_internal+0x634/0xd40 napi_complete_done+0x1d2/0x7d0 gro_cell_poll+0x118/0x1f0 A similar construction is found in skb_gro_receive, apply the same change there.
CVE-2024-35889 In the Linux kernel, the following vulnerability has been resolved: idpf: fix kernel panic on unknown packet types In the very rare case where a packet type is unknown to the driver, idpf_rx_process_skb_fields would return early without calling eth_type_trans to set the skb protocol / the network layer handler. This is especially problematic if tcpdump is running when such a packet is received, i.e. it would cause a kernel panic. Instead, call eth_type_trans for every single packet, even when the packet type is unknown.
CVE-2024-35888 In the Linux kernel, the following vulnerability has been resolved: erspan: make sure erspan_base_hdr is present in skb->head syzbot reported a problem in ip6erspan_rcv() [1] Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make sure erspan_base_hdr is present in skb linear part (skb->head) before getting @ver field from it. Add the missing pskb_may_pull() calls. v2: Reload iph pointer in erspan_rcv() after pskb_may_pull() because skb->head might have changed. [1] BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline] BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] pskb_may_pull include/linux/skbuff.h:2756 [inline] ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438 ip6_input_finish net/ipv6/ip6_input.c:483 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492 ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586 dst_input include/net/dst.h:460 [inline] ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:314 [inline] ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310 __netif_receive_skb_one_core net/core/dev.c:5538 [inline] __netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652 netif_receive_skb_internal net/core/dev.c:5738 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5798 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549 tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 tun_alloc_skb drivers/net/tun.c:1525 [inline] tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0
CVE-2024-35887 In the Linux kernel, the following vulnerability has been resolved: ax25: fix use-after-free bugs caused by ax25_ds_del_timer When the ax25 device is detaching, the ax25_dev_device_down() calls ax25_ds_del_timer() to cleanup the slave_timer. When the timer handler is running, the ax25_ds_del_timer() that calls del_timer() in it will return directly. As a result, the use-after-free bugs could happen, one of the scenarios is shown below: (Thread 1) | (Thread 2) | ax25_ds_timeout() ax25_dev_device_down() | ax25_ds_del_timer() | del_timer() | ax25_dev_put() //FREE | | ax25_dev-> //USE In order to mitigate bugs, when the device is detaching, use timer_shutdown_sync() to stop the timer.
CVE-2024-35886 In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix infinite recursion in fib6_dump_done(). syzkaller reported infinite recursive calls of fib6_dump_done() during netlink socket destruction. [1] From the log, syzkaller sent an AF_UNSPEC RTM_GETROUTE message, and then the response was generated. The following recvmmsg() resumed the dump for IPv6, but the first call of inet6_dump_fib() failed at kzalloc() due to the fault injection. [0] 12:01:34 executing program 3: r0 = socket$nl_route(0x10, 0x3, 0x0) sendmsg$nl_route(r0, ... snip ...) recvmmsg(r0, ... snip ...) (fail_nth: 8) Here, fib6_dump_done() was set to nlk_sk(sk)->cb.done, and the next call of inet6_dump_fib() set it to nlk_sk(sk)->cb.args[3]. syzkaller stopped receiving the response halfway through, and finally netlink_sock_destruct() called nlk_sk(sk)->cb.done(). fib6_dump_done() calls fib6_dump_end() and nlk_sk(sk)->cb.done() if it is still not NULL. fib6_dump_end() rewrites nlk_sk(sk)->cb.done() by nlk_sk(sk)->cb.args[3], but it has the same function, not NULL, calling itself recursively and hitting the stack guard page. To avoid the issue, let's set the destructor after kzalloc(). [0]: FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 0 CPU: 1 PID: 432110 Comm: syz-executor.3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:117) should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153) should_failslab (mm/slub.c:3733) kmalloc_trace (mm/slub.c:3748 mm/slub.c:3827 mm/slub.c:3992) inet6_dump_fib (./include/linux/slab.h:628 ./include/linux/slab.h:749 net/ipv6/ip6_fib.c:662) rtnl_dump_all (net/core/rtnetlink.c:4029) netlink_dump (net/netlink/af_netlink.c:2269) netlink_recvmsg (net/netlink/af_netlink.c:1988) ____sys_recvmsg (net/socket.c:1046 net/socket.c:2801) ___sys_recvmsg (net/socket.c:2846) do_recvmmsg (net/socket.c:2943) __x64_sys_recvmmsg (net/socket.c:3041 net/socket.c:3034 net/socket.c:3034) [1]: BUG: TASK stack guard page was hit at 00000000f2fa9af1 (stack is 00000000b7912430..000000009a436beb) stack guard page: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 223719 Comm: kworker/1:3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: events netlink_sock_destruct_work RIP: 0010:fib6_dump_done (net/ipv6/ip6_fib.c:570) Code: 3c 24 e8 f3 e9 51 fd e9 28 fd ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 41 57 41 56 41 55 41 54 55 48 89 fd <53> 48 8d 5d 60 e8 b6 4d 07 fd 48 89 da 48 b8 00 00 00 00 00 fc ff RSP: 0018:ffffc9000d980000 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffffffff84405990 RCX: ffffffff844059d3 RDX: ffff8881028e0000 RSI: ffffffff84405ac2 RDI: ffff88810c02f358 RBP: ffff88810c02f358 R08: 0000000000000007 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000224 R12: 0000000000000000 R13: ffff888007c82c78 R14: ffff888007c82c68 R15: ffff888007c82c68 FS: 0000000000000000(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc9000d97fff8 CR3: 0000000102309002 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <#DF> </#DF> <TASK> fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) ... fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) netlink_sock_destruct (net/netlink/af_netlink.c:401) __sk_destruct (net/core/sock.c:2177 (discriminator 2)) sk_destruct (net/core/sock.c:2224) __sk_free (net/core/sock.c:2235) sk_free (net/core/sock.c:2246) process_one_work (kernel/workqueue.c:3259) worker_thread (kernel/workqueue.c:3329 kernel/workqueue. ---truncated---
CVE-2024-35885 In the Linux kernel, the following vulnerability has been resolved: mlxbf_gige: stop interface during shutdown The mlxbf_gige driver intermittantly encounters a NULL pointer exception while the system is shutting down via "reboot" command. The mlxbf_driver will experience an exception right after executing its shutdown() method. One example of this exception is: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000011d373000 [0000000000000070] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] SMP CPU: 0 PID: 13 Comm: ksoftirqd/0 Tainted: G S OE 5.15.0-bf.6.gef6992a #1 Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS 4.0.2.12669 Apr 21 2023 pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige] lr : mlxbf_gige_poll+0x54/0x160 [mlxbf_gige] sp : ffff8000080d3c10 x29: ffff8000080d3c10 x28: ffffcce72cbb7000 x27: ffff8000080d3d58 x26: ffff0000814e7340 x25: ffff331cd1a05000 x24: ffffcce72c4ea008 x23: ffff0000814e4b40 x22: ffff0000814e4d10 x21: ffff0000814e4128 x20: 0000000000000000 x19: ffff0000814e4a80 x18: ffffffffffffffff x17: 000000000000001c x16: ffffcce72b4553f4 x15: ffff80008805b8a7 x14: 0000000000000000 x13: 0000000000000030 x12: 0101010101010101 x11: 7f7f7f7f7f7f7f7f x10: c2ac898b17576267 x9 : ffffcce720fa5404 x8 : ffff000080812138 x7 : 0000000000002e9a x6 : 0000000000000080 x5 : ffff00008de3b000 x4 : 0000000000000000 x3 : 0000000000000001 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige] mlxbf_gige_poll+0x54/0x160 [mlxbf_gige] __napi_poll+0x40/0x1c8 net_rx_action+0x314/0x3a0 __do_softirq+0x128/0x334 run_ksoftirqd+0x54/0x6c smpboot_thread_fn+0x14c/0x190 kthread+0x10c/0x110 ret_from_fork+0x10/0x20 Code: 8b070000 f9000ea0 f95056c0 f86178a1 (b9407002) ---[ end trace 7cc3941aa0d8e6a4 ]--- Kernel panic - not syncing: Oops: Fatal exception in interrupt Kernel Offset: 0x4ce722520000 from 0xffff800008000000 PHYS_OFFSET: 0x80000000 CPU features: 0x000005c1,a3330e5a Memory Limit: none ---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]--- During system shutdown, the mlxbf_gige driver's shutdown() is always executed. However, the driver's stop() method will only execute if networking interface configuration logic within the Linux distribution has been setup to do so. If shutdown() executes but stop() does not execute, NAPI remains enabled and this can lead to an exception if NAPI is scheduled while the hardware interface has only been partially deinitialized. The networking interface managed by the mlxbf_gige driver must be properly stopped during system shutdown so that IFF_UP is cleared, the hardware interface is put into a clean state, and NAPI is fully deinitialized.
CVE-2024-35884 In the Linux kernel, the following vulnerability has been resolved: udp: do not accept non-tunnel GSO skbs landing in a tunnel When rx-udp-gro-forwarding is enabled UDP packets might be GROed when being forwarded. If such packets might land in a tunnel this can cause various issues and udp_gro_receive makes sure this isn't the case by looking for a matching socket. This is performed in udp4/6_gro_lookup_skb but only in the current netns. This is an issue with tunneled packets when the endpoint is in another netns. In such cases the packets will be GROed at the UDP level, which leads to various issues later on. The same thing can happen with rx-gro-list. We saw this with geneve packets being GROed at the UDP level. In such case gso_size is set; later the packet goes through the geneve rx path, the geneve header is pulled, the offset are adjusted and frag_list skbs are not adjusted with regard to geneve. When those skbs hit skb_fragment, it will misbehave. Different outcomes are possible depending on what the GROed skbs look like; from corrupted packets to kernel crashes. One example is a BUG_ON[1] triggered in skb_segment while processing the frag_list. Because gso_size is wrong (geneve header was pulled) skb_segment thinks there is "geneve header size" of data in frag_list, although it's in fact the next packet. The BUG_ON itself has nothing to do with the issue. This is only one of the potential issues. Looking up for a matching socket in udp_gro_receive is fragile: the lookup could be extended to all netns (not speaking about performances) but nothing prevents those packets from being modified in between and we could still not find a matching socket. It's OK to keep the current logic there as it should cover most cases but we also need to make sure we handle tunnel packets being GROed too early. This is done by extending the checks in udp_unexpected_gso: GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must be segmented. [1] kernel BUG at net/core/skbuff.c:4408! RIP: 0010:skb_segment+0xd2a/0xf70 __udp_gso_segment+0xaa/0x560
CVE-2024-35883 In the Linux kernel, the following vulnerability has been resolved: spi: mchp-pci1xxx: Fix a possible null pointer dereference in pci1xxx_spi_probe In function pci1xxxx_spi_probe, there is a potential null pointer that may be caused by a failed memory allocation by the function devm_kzalloc. Hence, a null pointer check needs to be added to prevent null pointer dereferencing later in the code. To fix this issue, spi_bus->spi_int[iter] should be checked. The memory allocated by devm_kzalloc will be automatically released, so just directly return -ENOMEM without worrying about memory leaks.
CVE-2024-35882 In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix a slow server-side memory leak with RPC-over-TCP Jan Schunk reports that his small NFS servers suffer from memory exhaustion after just a few days. A bisect shows that commit e18e157bb5c8 ("SUNRPC: Send RPC message on TCP with a single sock_sendmsg() call") is the first bad commit. That commit assumed that sock_sendmsg() releases all the pages in the underlying bio_vec array, but the reality is that it doesn't. svc_xprt_release() releases the rqst's response pages, but the record marker page fragment isn't one of those, so it is never released. This is a narrow fix that can be applied to stable kernels. A more extensive fix is in the works.
CVE-2024-35880 In the Linux kernel, the following vulnerability has been resolved: io_uring/kbuf: hold io_buffer_list reference over mmap If we look up the kbuf, ensure that it doesn't get unregistered until after we're done with it. Since we're inside mmap, we cannot safely use the io_uring lock. Rely on the fact that we can lookup the buffer list under RCU now and grab a reference to it, preventing it from being unregistered until we're done with it. The lookup returns the io_buffer_list directly with it referenced.
CVE-2024-35879 In the Linux kernel, the following vulnerability has been resolved: of: dynamic: Synchronize of_changeset_destroy() with the devlink removals In the following sequence: 1) of_platform_depopulate() 2) of_overlay_remove() During the step 1, devices are destroyed and devlinks are removed. During the step 2, OF nodes are destroyed but __of_changeset_entry_destroy() can raise warnings related to missing of_node_put(): ERROR: memory leak, expected refcount 1 instead of 2 ... Indeed, during the devlink removals performed at step 1, the removal itself releasing the device (and the attached of_node) is done by a job queued in a workqueue and so, it is done asynchronously with respect to function calls. When the warning is present, of_node_put() will be called but wrongly too late from the workqueue job. In order to be sure that any ongoing devlink removals are done before the of_node destruction, synchronize the of_changeset_destroy() with the devlink removals.
CVE-2024-35878 In the Linux kernel, the following vulnerability has been resolved: of: module: prevent NULL pointer dereference in vsnprintf() In of_modalias(), we can get passed the str and len parameters which would cause a kernel oops in vsnprintf() since it only allows passing a NULL ptr when the length is also 0. Also, we need to filter out the negative values of the len parameter as these will result in a really huge buffer since snprintf() takes size_t parameter while ours is ssize_t... Found by Linux Verification Center (linuxtesting.org) with the Svace static analysis tool.
CVE-2024-35877 In the Linux kernel, the following vulnerability has been resolved: x86/mm/pat: fix VM_PAT handling in COW mappings PAT handling won't do the right thing in COW mappings: the first PTE (or, in fact, all PTEs) can be replaced during write faults to point at anon folios. Reliably recovering the correct PFN and cachemode using follow_phys() from PTEs will not work in COW mappings. Using follow_phys(), we might just get the address+protection of the anon folio (which is very wrong), or fail on swap/nonswap entries, failing follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and track_pfn_copy(), not properly calling free_pfn_range(). In free_pfn_range(), we either wouldn't call memtype_free() or would call it with the wrong range, possibly leaking memory. To fix that, let's update follow_phys() to refuse returning anon folios, and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings if we run into that. We will now properly handle untrack_pfn() with COW mappings, where we don't need the cachemode. We'll have to fail fork()->track_pfn_copy() if the first page was replaced by an anon folio, though: we'd have to store the cachemode in the VMA to make this work, likely growing the VMA size. For now, lets keep it simple and let track_pfn_copy() just fail in that case: it would have failed in the past with swap/nonswap entries already, and it would have done the wrong thing with anon folios. Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn(): <--- C reproducer ---> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <liburing.h> int main(void) { struct io_uring_params p = {}; int ring_fd; size_t size; char *map; ring_fd = io_uring_setup(1, &p); if (ring_fd < 0) { perror("io_uring_setup"); return 1; } size = p.sq_off.array + p.sq_entries * sizeof(unsigned); /* Map the submission queue ring MAP_PRIVATE */ map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, ring_fd, IORING_OFF_SQ_RING); if (map == MAP_FAILED) { perror("mmap"); return 1; } /* We have at least one page. Let's COW it. */ *map = 0; pause(); return 0; } <--- C reproducer ---> On a system with 16 GiB RAM and swap configured: # ./iouring & # memhog 16G # killall iouring [ 301.552930] ------------[ cut here ]------------ [ 301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100 [ 301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g [ 301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1 [ 301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4 [ 301.559569] RIP: 0010:untrack_pfn+0xf4/0x100 [ 301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000 [ 301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282 [ 301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047 [ 301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200 [ 301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000 [ 301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000 [ 301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000 [ 301.564186] FS: 0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000 [ 301.564773] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0 [ 301.565725] PKRU: 55555554 [ 301.565944] Call Trace: [ 301.566148] <TASK> [ 301.566325] ? untrack_pfn+0xf4/0x100 [ 301.566618] ? __warn+0x81/0x130 [ 301.566876] ? untrack_pfn+0xf4/0x100 [ 3 ---truncated---
CVE-2024-35875 In the Linux kernel, the following vulnerability has been resolved: x86/coco: Require seeding RNG with RDRAND on CoCo systems There are few uses of CoCo that don't rely on working cryptography and hence a working RNG. Unfortunately, the CoCo threat model means that the VM host cannot be trusted and may actively work against guests to extract secrets or manipulate computation. Since a malicious host can modify or observe nearly all inputs to guests, the only remaining source of entropy for CoCo guests is RDRAND. If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole is meant to gracefully continue on gathering entropy from other sources, but since there aren't other sources on CoCo, this is catastrophic. This is mostly a concern at boot time when initially seeding the RNG, as after that the consequences of a broken RDRAND are much more theoretical. So, try at boot to seed the RNG using 256 bits of RDRAND output. If this fails, panic(). This will also trigger if the system is booted without RDRAND, as RDRAND is essential for a safe CoCo boot. Add this deliberately to be "just a CoCo x86 driver feature" and not part of the RNG itself. Many device drivers and platforms have some desire to contribute something to the RNG, and add_device_randomness() is specifically meant for this purpose. Any driver can call it with seed data of any quality, or even garbage quality, and it can only possibly make the quality of the RNG better or have no effect, but can never make it worse. Rather than trying to build something into the core of the RNG, consider the particular CoCo issue just a CoCo issue, and therefore separate it all out into driver (well, arch/platform) code. [ bp: Massage commit message. ]
CVE-2024-35874 In the Linux kernel, the following vulnerability has been resolved: aio: Fix null ptr deref in aio_complete() wakeup list_del_init_careful() needs to be the last access to the wait queue entry - it effectively unlocks access. Previously, finish_wait() would see the empty list head and skip taking the lock, and then we'd return - but the completion path would still attempt to do the wakeup after the task_struct pointer had been overwritten.
CVE-2024-35873 In the Linux kernel, the following vulnerability has been resolved: riscv: Fix vector state restore in rt_sigreturn() The RISC-V Vector specification states in "Appendix D: Calling Convention for Vector State" [1] that "Executing a system call causes all caller-saved vector registers (v0-v31, vl, vtype) and vstart to become unspecified.". In the RISC-V kernel this is called "discarding the vstate". Returning from a signal handler via the rt_sigreturn() syscall, vector discard is also performed. However, this is not an issue since the vector state should be restored from the sigcontext, and therefore not care about the vector discard. The "live state" is the actual vector register in the running context, and the "vstate" is the vector state of the task. A dirty live state, means that the vstate and live state are not in synch. When vectorized user_from_copy() was introduced, an bug sneaked in at the restoration code, related to the discard of the live state. An example when this go wrong: 1. A userland application is executing vector code 2. The application receives a signal, and the signal handler is entered. 3. The application returns from the signal handler, using the rt_sigreturn() syscall. 4. The live vector state is discarded upon entering the rt_sigreturn(), and the live state is marked as "dirty", indicating that the live state need to be synchronized with the current vstate. 5. rt_sigreturn() restores the vstate, except the Vector registers, from the sigcontext 6. rt_sigreturn() restores the Vector registers, from the sigcontext, and now the vectorized user_from_copy() is used. The dirty live state from the discard is saved to the vstate, making the vstate corrupt. 7. rt_sigreturn() returns to the application, which crashes due to corrupted vstate. Note that the vectorized user_from_copy() is invoked depending on the value of CONFIG_RISCV_ISA_V_UCOPY_THRESHOLD. Default is 768, which means that vlen has to be larger than 128b for this bug to trigger. The fix is simply to mark the live state as non-dirty/clean prior performing the vstate restore.
CVE-2024-35872 In the Linux kernel, the following vulnerability has been resolved: mm/secretmem: fix GUP-fast succeeding on secretmem folios folio_is_secretmem() currently relies on secretmem folios being LRU folios, to save some cycles. However, folios might reside in a folio batch without the LRU flag set, or temporarily have their LRU flag cleared. Consequently, the LRU flag is unreliable for this purpose. In particular, this is the case when secretmem_fault() allocates a fresh page and calls filemap_add_folio()->folio_add_lru(). The folio might be added to the per-cpu folio batch and won't get the LRU flag set until the batch was drained using e.g., lru_add_drain(). Consequently, folio_is_secretmem() might not detect secretmem folios and GUP-fast can succeed in grabbing a secretmem folio, crashing the kernel when we would later try reading/writing to the folio, because the folio has been unmapped from the directmap. Fix it by removing that unreliable check.
CVE-2024-35871 In the Linux kernel, the following vulnerability has been resolved: riscv: process: Fix kernel gp leakage childregs represents the registers which are active for the new thread in user context. For a kernel thread, childregs->gp is never used since the kernel gp is not touched by switch_to. For a user mode helper, the gp value can be observed in user space after execve or possibly by other means. [From the email thread] The /* Kernel thread */ comment is somewhat inaccurate in that it is also used for user_mode_helper threads, which exec a user process, e.g. /sbin/init or when /proc/sys/kernel/core_pattern is a pipe. Such threads do not have PF_KTHREAD set and are valid targets for ptrace etc. even before they exec. childregs is the *user* context during syscall execution and it is observable from userspace in at least five ways: 1. kernel_execve does not currently clear integer registers, so the starting register state for PID 1 and other user processes started by the kernel has sp = user stack, gp = kernel __global_pointer$, all other integer registers zeroed by the memset in the patch comment. This is a bug in its own right, but I'm unwilling to bet that it is the only way to exploit the issue addressed by this patch. 2. ptrace(PTRACE_GETREGSET): you can PTRACE_ATTACH to a user_mode_helper thread before it execs, but ptrace requires SIGSTOP to be delivered which can only happen at user/kernel boundaries. 3. /proc/*/task/*/syscall: this is perfectly happy to read pt_regs for user_mode_helpers before the exec completes, but gp is not one of the registers it returns. 4. PERF_SAMPLE_REGS_USER: LOCKDOWN_PERF normally prevents access to kernel addresses via PERF_SAMPLE_REGS_INTR, but due to this bug kernel addresses are also exposed via PERF_SAMPLE_REGS_USER which is permitted under LOCKDOWN_PERF. I have not attempted to write exploit code. 5. Much of the tracing infrastructure allows access to user registers. I have not attempted to determine which forms of tracing allow access to user registers without already allowing access to kernel registers.
CVE-2024-35870 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix UAF in smb2_reconnect_server() The UAF bug is due to smb2_reconnect_server() accessing a session that is already being teared down by another thread that is executing __cifs_put_smb_ses(). This can happen when (a) the client has connection to the server but no session or (b) another thread ends up setting @ses->ses_status again to something different than SES_EXITING. To fix this, we need to make sure to unconditionally set @ses->ses_status to SES_EXITING and prevent any other threads from setting a new status while we're still tearing it down. The following can be reproduced by adding some delay to right after the ipc is freed in __cifs_put_smb_ses() - which will give smb2_reconnect_server() worker a chance to run and then accessing @ses->ipc: kinit ... mount.cifs //srv/share /mnt/1 -o sec=krb5,nohandlecache,echo_interval=10 [disconnect srv] ls /mnt/1 &>/dev/null sleep 30 kdestroy [reconnect srv] sleep 10 umount /mnt/1 ... CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed CIFS: VFS: \\srv Send error in SessSetup = -126 CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed CIFS: VFS: \\srv Send error in SessSetup = -126 general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc2 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014 Workqueue: cifsiod smb2_reconnect_server [cifs] RIP: 0010:__list_del_entry_valid_or_report+0x33/0xf0 Code: 4f 08 48 85 d2 74 42 48 85 c9 74 59 48 b8 00 01 00 00 00 00 ad de 48 39 c2 74 61 48 b8 22 01 00 00 00 00 74 69 <48> 8b 01 48 39 f8 75 7b 48 8b 72 08 48 39 c6 0f 85 88 00 00 00 b8 RSP: 0018:ffffc900001bfd70 EFLAGS: 00010a83 RAX: dead000000000122 RBX: ffff88810da53838 RCX: 6b6b6b6b6b6b6b6b RDX: 6b6b6b6b6b6b6b6b RSI: ffffffffc02f6878 RDI: ffff88810da53800 RBP: ffff88810da53800 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff88810c064000 R13: 0000000000000001 R14: ffff88810c064000 R15: ffff8881039cc000 FS: 0000000000000000(0000) GS:ffff888157c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe3728b1000 CR3: 000000010caa4000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? die_addr+0x36/0x90 ? exc_general_protection+0x1c1/0x3f0 ? asm_exc_general_protection+0x26/0x30 ? __list_del_entry_valid_or_report+0x33/0xf0 __cifs_put_smb_ses+0x1ae/0x500 [cifs] smb2_reconnect_server+0x4ed/0x710 [cifs] process_one_work+0x205/0x6b0 worker_thread+0x191/0x360 ? __pfx_worker_thread+0x10/0x10 kthread+0xe2/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK>
CVE-2024-35869 In the Linux kernel, the following vulnerability has been resolved: smb: client: guarantee refcounted children from parent session Avoid potential use-after-free bugs when walking DFS referrals, mounting and performing DFS failover by ensuring that all children from parent @tcon->ses are also refcounted. They're all needed across the entire DFS mount. Get rid of @tcon->dfs_ses_list while we're at it, too.
CVE-2024-35868 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_stats_proc_write() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35867 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_stats_proc_show() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35866 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_dump_full_key() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35865 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_is_valid_oplock_break() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35864 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_is_valid_lease_break() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35863 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in is_valid_oplock_break() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35862 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_is_network_name_deleted() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35861 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_signal_cifsd_for_reconnect() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35860 In the Linux kernel, the following vulnerability has been resolved: bpf: support deferring bpf_link dealloc to after RCU grace period BPF link for some program types is passed as a "context" which can be used by those BPF programs to look up additional information. E.g., for multi-kprobes and multi-uprobes, link is used to fetch BPF cookie values. Because of this runtime dependency, when bpf_link refcnt drops to zero there could still be active BPF programs running accessing link data. This patch adds generic support to defer bpf_link dealloc callback to after RCU GP, if requested. This is done by exposing two different deallocation callbacks, one synchronous and one deferred. If deferred one is provided, bpf_link_free() will schedule dealloc_deferred() callback to happen after RCU GP. BPF is using two flavors of RCU: "classic" non-sleepable one and RCU tasks trace one. The latter is used when sleepable BPF programs are used. bpf_link_free() accommodates that by checking underlying BPF program's sleepable flag, and goes either through normal RCU GP only for non-sleepable, or through RCU tasks trace GP *and* then normal RCU GP (taking into account rcu_trace_implies_rcu_gp() optimization), if BPF program is sleepable. We use this for multi-kprobe and multi-uprobe links, which dereference link during program run. We also preventively switch raw_tp link to use deferred dealloc callback, as upcoming changes in bpf-next tree expose raw_tp link data (specifically, cookie value) to BPF program at runtime as well.
CVE-2024-35859 In the Linux kernel, the following vulnerability has been resolved: block: fix module reference leakage from bdev_open_by_dev error path At the time bdev_may_open() is called, module reference is grabbed already, hence module reference should be released if bdev_may_open() failed. This problem is found by code review.
CVE-2024-35858 In the Linux kernel, the following vulnerability has been resolved: net: bcmasp: fix memory leak when bringing down interface When bringing down the TX rings we flush the rings but forget to reclaimed the flushed packets. This leads to a memory leak since we do not free the dma mapped buffers. This also leads to tx control block corruption when bringing down the interface for power management.
CVE-2024-35857 In the Linux kernel, the following vulnerability has been resolved: icmp: prevent possible NULL dereferences from icmp_build_probe() First problem is a double call to __in_dev_get_rcu(), because the second one could return NULL. if (__in_dev_get_rcu(dev) && __in_dev_get_rcu(dev)->ifa_list) Second problem is a read from dev->ip6_ptr with no NULL check: if (!list_empty(&rcu_dereference(dev->ip6_ptr)->addr_list)) Use the correct RCU API to fix these. v2: add missing include <net/addrconf.h>
CVE-2024-35856 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: Fix double free of skb in coredump hci_devcd_append() would free the skb on error so the caller don't have to free it again otherwise it would cause the double free of skb. Reported-by : Dan Carpenter <dan.carpenter@linaro.org>
CVE-2024-35855 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update The rule activity update delayed work periodically traverses the list of configured rules and queries their activity from the device. As part of this task it accesses the entry pointed by 'ventry->entry', but this entry can be changed concurrently by the rehash delayed work, leading to a use-after-free [1]. Fix by closing the race and perform the activity query under the 'vregion->lock' mutex. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181 CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 mlxsw_sp_acl_rule_activity_update_work+0x219/0x400 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_entry_create+0x7b/0x1f0 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x30d/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3d7/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30
CVE-2024-35854 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash The rehash delayed work migrates filters from one region to another according to the number of available credits. The migrated from region is destroyed at the end of the work if the number of credits is non-negative as the assumption is that this is indicative of migration being complete. This assumption is incorrect as a non-negative number of credits can also be the result of a failed migration. The destruction of a region that still has filters referencing it can result in a use-after-free [1]. Fix by not destroying the region if migration failed. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858 CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70 mlxsw_sp_acl_atcam_entry_del+0x81/0x210 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 174: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 7: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_region_destroy+0x272/0x310 mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30
CVE-2024-35853 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak during rehash The rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. If the migration fails, the code tries to migrate the filters back to the old region. However, the rollback itself can also fail in which case another migration will be erroneously performed. Besides the fact that this ping pong is not a very good idea, it also creates a problem. Each virtual chunk references two chunks: The currently used one ('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the first holds the chunk we want to migrate filters to and the second holds the chunk we are migrating filters from. The code currently assumes - but does not verify - that the backup chunk does not exist (NULL) if the currently used chunk does not reference the target region. This assumption breaks when we are trying to rollback a rollback, resulting in the backup chunk being overwritten and leaked [1]. Fix by not rolling back a failed rollback and add a warning to avoid future cases. [1] WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20 Modules linked in: CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:parman_destroy+0x17/0x20 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_region_fini+0x19/0x60 mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK>
CVE-2024-35852 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work The rehash delayed work is rescheduled with a delay if the number of credits at end of the work is not negative as supposedly it means that the migration ended. Otherwise, it is rescheduled immediately. After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash" the above is no longer accurate as a non-negative number of credits is no longer indicative of the migration being done. It can also happen if the work encountered an error in which case the migration will resume the next time the work is scheduled. The significance of the above is that it is possible for the work to be pending and associated with hints that were allocated when the migration started. This leads to the hints being leaked [1] when the work is canceled while pending as part of ACL region dismantle. Fix by freeing the hints if hints are associated with a work that was canceled while pending. Blame the original commit since the reliance on not having a pending work associated with hints is fragile. [1] unreferenced object 0xffff88810e7c3000 (size 256): comm "kworker/0:16", pid 176, jiffies 4295460353 hex dump (first 32 bytes): 00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a....... 00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@........... backtrace (crc 2544ddb9): [<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0 [<000000004d9a1ad9>] objagg_hints_get+0x42/0x390 [<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400 [<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160 [<00000000e81fd734>] process_one_work+0x59c/0xf20 [<00000000ceee9e81>] worker_thread+0x799/0x12c0 [<00000000bda6fe39>] kthread+0x246/0x300 [<0000000070056d23>] ret_from_fork+0x34/0x70 [<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30
CVE-2024-35851 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: qca: fix NULL-deref on non-serdev suspend Qualcomm ROME controllers can be registered from the Bluetooth line discipline and in this case the HCI UART serdev pointer is NULL. Add the missing sanity check to prevent a NULL-pointer dereference when wakeup() is called for a non-serdev controller during suspend. Just return true for now to restore the original behaviour and address the crash with pre-6.2 kernels, which do not have commit e9b3e5b8c657 ("Bluetooth: hci_qca: only assign wakeup with serial port support") that causes the crash to happen already at setup() time.
CVE-2024-35850 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: qca: fix NULL-deref on non-serdev setup Qualcomm ROME controllers can be registered from the Bluetooth line discipline and in this case the HCI UART serdev pointer is NULL. Add the missing sanity check to prevent a NULL-pointer dereference when setup() is called for a non-serdev controller.
CVE-2024-35849 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix information leak in btrfs_ioctl_logical_to_ino() Syzbot reported the following information leak for in btrfs_ioctl_logical_to_ino(): BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40 instrument_copy_to_user include/linux/instrumented.h:114 [inline] _copy_to_user+0xbc/0x110 lib/usercopy.c:40 copy_to_user include/linux/uaccess.h:191 [inline] btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499 btrfs_ioctl+0x714/0x1260 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:904 [inline] __se_sys_ioctl+0x261/0x450 fs/ioctl.c:890 __x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890 x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: __kmalloc_large_node+0x231/0x370 mm/slub.c:3921 __do_kmalloc_node mm/slub.c:3954 [inline] __kmalloc_node+0xb07/0x1060 mm/slub.c:3973 kmalloc_node include/linux/slab.h:648 [inline] kvmalloc_node+0xc0/0x2d0 mm/util.c:634 kvmalloc include/linux/slab.h:766 [inline] init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779 btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480 btrfs_ioctl+0x714/0x1260 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:904 [inline] __se_sys_ioctl+0x261/0x450 fs/ioctl.c:890 __x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890 x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Bytes 40-65535 of 65536 are uninitialized Memory access of size 65536 starts at ffff888045a40000 This happens, because we're copying a 'struct btrfs_data_container' back to user-space. This btrfs_data_container is allocated in 'init_data_container()' via kvmalloc(), which does not zero-fill the memory. Fix this by using kvzalloc() which zeroes out the memory on allocation.
CVE-2024-35848 In the Linux kernel, the following vulnerability has been resolved: eeprom: at24: fix memory corruption race condition If the eeprom is not accessible, an nvmem device will be registered, the read will fail, and the device will be torn down. If another driver accesses the nvmem device after the teardown, it will reference invalid memory. Move the failure point before registering the nvmem device.
CVE-2024-35847 In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Prevent double free on error The error handling path in its_vpe_irq_domain_alloc() causes a double free when its_vpe_init() fails after successfully allocating at least one interrupt. This happens because its_vpe_irq_domain_free() frees the interrupts along with the area bitmap and the vprop_page and its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the vprop_page again. Fix this by unconditionally invoking its_vpe_irq_domain_free() which handles all cases correctly and by removing the bitmap/vprop_page freeing from its_vpe_irq_domain_alloc(). [ tglx: Massaged change log ]
CVE-2024-35846 In the Linux kernel, the following vulnerability has been resolved: mm: zswap: fix shrinker NULL crash with cgroup_disable=memory Christian reports a NULL deref in zswap that he bisected down to the zswap shrinker. The issue also cropped up in the bug trackers of libguestfs [1] and the Red Hat bugzilla [2]. The problem is that when memcg is disabled with the boot time flag, the zswap shrinker might get called with sc->memcg == NULL. This is okay in many places, like the lruvec operations. But it crashes in memcg_page_state() - which is only used due to the non-node accounting of cgroup's the zswap memory to begin with. Nhat spotted that the memcg can be NULL in the memcg-disabled case, and I was then able to reproduce the crash locally as well. [1] https://github.com/libguestfs/libguestfs/issues/139 [2] https://bugzilla.redhat.com/show_bug.cgi?id=2275252
CVE-2024-35845 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dbg-tlv: ensure NUL termination The iwl_fw_ini_debug_info_tlv is used as a string, so we must ensure the string is terminated correctly before using it.
CVE-2024-35844 In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: fix reserve_cblocks counting error when out of space When a file only needs one direct_node, performing the following operations will cause the file to be unrepairable: unisoc # ./f2fs_io compress test.apk unisoc #df -h | grep dm-48 /dev/block/dm-48 112G 112G 1.2M 100% /data unisoc # ./f2fs_io release_cblocks test.apk 924 unisoc # df -h | grep dm-48 /dev/block/dm-48 112G 112G 4.8M 100% /data unisoc # dd if=/dev/random of=file4 bs=1M count=3 3145728 bytes (3.0 M) copied, 0.025 s, 120 M/s unisoc # df -h | grep dm-48 /dev/block/dm-48 112G 112G 1.8M 100% /data unisoc # ./f2fs_io reserve_cblocks test.apk F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device adb reboot unisoc # df -h | grep dm-48 /dev/block/dm-48 112G 112G 11M 100% /data unisoc # ./f2fs_io reserve_cblocks test.apk 0 This is because the file has only one direct_node. After returning to -ENOSPC, reserved_blocks += ret will not be executed. As a result, the reserved_blocks at this time is still 0, which is not the real number of reserved blocks. Therefore, fsck cannot be set to repair the file. After this patch, the fsck flag will be set to fix this problem. unisoc # df -h | grep dm-48 /dev/block/dm-48 112G 112G 1.8M 100% /data unisoc # ./f2fs_io reserve_cblocks test.apk F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device adb reboot then fsck will be executed unisoc # df -h | grep dm-48 /dev/block/dm-48 112G 112G 11M 100% /data unisoc # ./f2fs_io reserve_cblocks test.apk 924
CVE-2024-35843 In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Use device rbtree in iopf reporting path The existing I/O page fault handler currently locates the PCI device by calling pci_get_domain_bus_and_slot(). This function searches the list of all PCI devices until the desired device is found. To improve lookup efficiency, replace it with device_rbtree_find() to search the device within the probed device rbtree. The I/O page fault is initiated by the device, which does not have any synchronization mechanism with the software to ensure that the device stays in the probed device tree. Theoretically, a device could be released by the IOMMU subsystem after device_rbtree_find() and before iopf_get_dev_fault_param(), which would cause a use-after-free problem. Add a mutex to synchronize the I/O page fault reporting path and the IOMMU release device path. This lock doesn't introduce any performance overhead, as the conflict between I/O page fault reporting and device releasing is very rare.
CVE-2024-35842 In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: sof-common: Add NULL check for normal_link string It's not granted that all entries of struct sof_conn_stream declare a `normal_link` (a non-SOF, direct link) string, and this is the case for SoCs that support only SOF paths (hence do not support both direct and SOF usecases). For example, in the case of MT8188 there is no normal_link string in any of the sof_conn_stream entries and there will be more drivers doing that in the future. To avoid possible NULL pointer KPs, add a NULL check for `normal_link`.
CVE-2024-35841 In the Linux kernel, the following vulnerability has been resolved: net: tls, fix WARNIING in __sk_msg_free A splice with MSG_SPLICE_PAGES will cause tls code to use the tls_sw_sendmsg_splice path in the TLS sendmsg code to move the user provided pages from the msg into the msg_pl. This will loop over the msg until msg_pl is full, checked by sk_msg_full(msg_pl). The user can also set the MORE flag to hint stack to delay sending until receiving more pages and ideally a full buffer. If the user adds more pages to the msg than can fit in the msg_pl scatterlist (MAX_MSG_FRAGS) we should ignore the MORE flag and send the buffer anyways. What actually happens though is we abort the msg to msg_pl scatterlist setup and then because we forget to set 'full record' indicating we can no longer consume data without a send we fallthrough to the 'continue' path which will check if msg_data_left(msg) has more bytes to send and then attempts to fit them in the already full msg_pl. Then next iteration of sender doing send will encounter a full msg_pl and throw the warning in the syzbot report. To fix simply check if we have a full_record in splice code path and if not send the msg regardless of MORE flag.
CVE-2024-35840 In the Linux kernel, the following vulnerability has been resolved: mptcp: use OPTION_MPTCP_MPJ_SYNACK in subflow_finish_connect() subflow_finish_connect() uses four fields (backup, join_id, thmac, none) that may contain garbage unless OPTION_MPTCP_MPJ_SYNACK has been set in mptcp_parse_option()
CVE-2024-35839 In the Linux kernel, the following vulnerability has been resolved: netfilter: bridge: replace physindev with physinif in nf_bridge_info An skb can be added to a neigh->arp_queue while waiting for an arp reply. Where original skb's skb->dev can be different to neigh's neigh->dev. For instance in case of bridging dnated skb from one veth to another, the skb would be added to a neigh->arp_queue of the bridge. As skb->dev can be reset back to nf_bridge->physindev and used, and as there is no explicit mechanism that prevents this physindev from been freed under us (for instance neigh_flush_dev doesn't cleanup skbs from different device's neigh queue) we can crash on e.g. this stack: arp_process neigh_update skb = __skb_dequeue(&neigh->arp_queue) neigh_resolve_output(..., skb) ... br_nf_dev_xmit br_nf_pre_routing_finish_bridge_slow skb->dev = nf_bridge->physindev br_handle_frame_finish Let's use plain ifindex instead of net_device link. To peek into the original net_device we will use dev_get_by_index_rcu(). Thus either we get device and are safe to use it or we don't get it and drop skb.
CVE-2024-35838 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix potential sta-link leak When a station is allocated, links are added but not set to valid yet (e.g. during connection to an AP MLD), we might remove the station without ever marking links valid, and leak them. Fix that.
CVE-2024-35837 In the Linux kernel, the following vulnerability has been resolved: net: mvpp2: clear BM pool before initialization Register value persist after booting the kernel using kexec which results in kernel panic. Thus clear the BM pool registers before initialisation to fix the issue.
CVE-2024-35836 In the Linux kernel, the following vulnerability has been resolved: dpll: fix pin dump crash for rebound module When a kernel module is unbound but the pin resources were not entirely freed (other kernel module instance of the same PCI device have had kept the reference to that pin), and kernel module is again bound, the pin properties would not be updated (the properties are only assigned when memory for the pin is allocated), prop pointer still points to the kernel module memory of the kernel module which was deallocated on the unbind. If the pin dump is invoked in this state, the result is a kernel crash. Prevent the crash by storing persistent pin properties in dpll subsystem, copy the content from the kernel module when pin is allocated, instead of using memory of the kernel module.
CVE-2024-35835 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: fix a double-free in arfs_create_groups When `in` allocated by kvzalloc fails, arfs_create_groups will free ft->g and return an error. However, arfs_create_table, the only caller of arfs_create_groups, will hold this error and call to mlx5e_destroy_flow_table, in which the ft->g will be freed again.
CVE-2024-35834 In the Linux kernel, the following vulnerability has been resolved: xsk: recycle buffer in case Rx queue was full Add missing xsk_buff_free() call when __xsk_rcv_zc() failed to produce descriptor to XSK Rx queue.
CVE-2024-35833 In the Linux kernel, the following vulnerability has been resolved: dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA This dma_alloc_coherent() is undone neither in the remove function, nor in the error handling path of fsl_qdma_probe(). Switch to the managed version to fix both issues.
CVE-2024-35832 In the Linux kernel, the following vulnerability has been resolved: bcachefs: kvfree bch_fs::snapshots in bch2_fs_snapshots_exit bch_fs::snapshots is allocated by kvzalloc in __snapshot_t_mut. It should be freed by kvfree not kfree. Or umount will triger: [ 406.829178 ] BUG: unable to handle page fault for address: ffffe7b487148008 [ 406.830676 ] #PF: supervisor read access in kernel mode [ 406.831643 ] #PF: error_code(0x0000) - not-present page [ 406.832487 ] PGD 0 P4D 0 [ 406.832898 ] Oops: 0000 [#1] PREEMPT SMP PTI [ 406.833512 ] CPU: 2 PID: 1754 Comm: umount Kdump: loaded Tainted: G OE 6.7.0-rc7-custom+ #90 [ 406.834746 ] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 [ 406.835796 ] RIP: 0010:kfree+0x62/0x140 [ 406.836197 ] Code: 80 48 01 d8 0f 82 e9 00 00 00 48 c7 c2 00 00 00 80 48 2b 15 78 9f 1f 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 56 9f 1f 01 <48> 8b 50 08 48 89 c7 f6 c2 01 0f 85 b0 00 00 00 66 90 48 8b 07 f6 [ 406.837810 ] RSP: 0018:ffffb9d641607e48 EFLAGS: 00010286 [ 406.838213 ] RAX: ffffe7b487148000 RBX: ffffb9d645200000 RCX: ffffb9d641607dc4 [ 406.838738 ] RDX: 000065bb00000000 RSI: ffffffffc0d88b84 RDI: ffffb9d645200000 [ 406.839217 ] RBP: ffff9a4625d00068 R08: 0000000000000001 R09: 0000000000000001 [ 406.839650 ] R10: 0000000000000001 R11: 000000000000001f R12: ffff9a4625d4da80 [ 406.840055 ] R13: ffff9a4625d00000 R14: ffffffffc0e2eb20 R15: 0000000000000000 [ 406.840451 ] FS: 00007f0a264ffb80(0000) GS:ffff9a4e2d500000(0000) knlGS:0000000000000000 [ 406.840851 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 406.841125 ] CR2: ffffe7b487148008 CR3: 000000018c4d2000 CR4: 00000000000006f0 [ 406.841464 ] Call Trace: [ 406.841583 ] <TASK> [ 406.841682 ] ? __die+0x1f/0x70 [ 406.841828 ] ? page_fault_oops+0x159/0x470 [ 406.842014 ] ? fixup_exception+0x22/0x310 [ 406.842198 ] ? exc_page_fault+0x1ed/0x200 [ 406.842382 ] ? asm_exc_page_fault+0x22/0x30 [ 406.842574 ] ? bch2_fs_release+0x54/0x280 [bcachefs] [ 406.842842 ] ? kfree+0x62/0x140 [ 406.842988 ] ? kfree+0x104/0x140 [ 406.843138 ] bch2_fs_release+0x54/0x280 [bcachefs] [ 406.843390 ] kobject_put+0xb7/0x170 [ 406.843552 ] deactivate_locked_super+0x2f/0xa0 [ 406.843756 ] cleanup_mnt+0xba/0x150 [ 406.843917 ] task_work_run+0x59/0xa0 [ 406.844083 ] exit_to_user_mode_prepare+0x197/0x1a0 [ 406.844302 ] syscall_exit_to_user_mode+0x16/0x40 [ 406.844510 ] do_syscall_64+0x4e/0xf0 [ 406.844675 ] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 406.844907 ] RIP: 0033:0x7f0a2664e4fb
CVE-2024-35831 In the Linux kernel, the following vulnerability has been resolved: io_uring: Fix release of pinned pages when __io_uaddr_map fails Looking at the error path of __io_uaddr_map, if we fail after pinning the pages for any reasons, ret will be set to -EINVAL and the error handler won't properly release the pinned pages. I didn't manage to trigger it without forcing a failure, but it can happen in real life when memory is heavily fragmented.
CVE-2024-35830 In the Linux kernel, the following vulnerability has been resolved: media: tc358743: register v4l2 async device only after successful setup Ensure the device has been setup correctly before registering the v4l2 async device, thus allowing userspace to access.
CVE-2024-35829 In the Linux kernel, the following vulnerability has been resolved: drm/lima: fix a memleak in lima_heap_alloc When lima_vm_map_bo fails, the resources need to be deallocated, or there will be memleaks.
CVE-2024-35828 In the Linux kernel, the following vulnerability has been resolved: wifi: libertas: fix some memleaks in lbs_allocate_cmd_buffer() In the for statement of lbs_allocate_cmd_buffer(), if the allocation of cmdarray[i].cmdbuf fails, both cmdarray and cmdarray[i].cmdbuf needs to be freed. Otherwise, there will be memleaks in lbs_allocate_cmd_buffer().
CVE-2024-35827 In the Linux kernel, the following vulnerability has been resolved: io_uring/net: fix overflow check in io_recvmsg_mshot_prep() The "controllen" variable is type size_t (unsigned long). Casting it to int could lead to an integer underflow. The check_add_overflow() function considers the type of the destination which is type int. If we add two positive values and the result cannot fit in an integer then that's counted as an overflow. However, if we cast "controllen" to an int and it turns negative, then negative values *can* fit into an int type so there is no overflow. Good: 100 + (unsigned long)-4 = 96 <-- overflow Bad: 100 + (int)-4 = 96 <-- no overflow I deleted the cast of the sizeof() as well. That's not a bug but the cast is unnecessary.
CVE-2024-35826 In the Linux kernel, the following vulnerability has been resolved: block: Fix page refcounts for unaligned buffers in __bio_release_pages() Fix an incorrect number of pages being released for buffers that do not start at the beginning of a page.
CVE-2024-35825 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: ncm: Fix handling of zero block length packets While connecting to a Linux host with CDC_NCM_NTB_DEF_SIZE_TX set to 65536, it has been observed that we receive short packets, which come at interval of 5-10 seconds sometimes and have block length zero but still contain 1-2 valid datagrams present. According to the NCM spec: "If wBlockLength = 0x0000, the block is terminated by a short packet. In this case, the USB transfer must still be shorter than dwNtbInMaxSize or dwNtbOutMaxSize. If exactly dwNtbInMaxSize or dwNtbOutMaxSize bytes are sent, and the size is a multiple of wMaxPacketSize for the given pipe, then no ZLP shall be sent. wBlockLength= 0x0000 must be used with extreme care, because of the possibility that the host and device may get out of sync, and because of test issues. wBlockLength = 0x0000 allows the sender to reduce latency by starting to send a very large NTB, and then shortening it when the sender discovers that there&#8217;s not sufficient data to justify sending a large NTB" However, there is a potential issue with the current implementation, as it checks for the occurrence of multiple NTBs in a single giveback by verifying if the leftover bytes to be processed is zero or not. If the block length reads zero, we would process the same NTB infintely because the leftover bytes is never zero and it leads to a crash. Fix this by bailing out if block length reads zero.
CVE-2024-35824 In the Linux kernel, the following vulnerability has been resolved: misc: lis3lv02d_i2c: Fix regulators getting en-/dis-abled twice on suspend/resume When not configured for wakeup lis3lv02d_i2c_suspend() will call lis3lv02d_poweroff() even if the device has already been turned off by the runtime-suspend handler and if configured for wakeup and the device is runtime-suspended at this point then it is not turned back on to serve as a wakeup source. Before commit b1b9f7a49440 ("misc: lis3lv02d_i2c: Add missing setting of the reg_ctrl callback"), lis3lv02d_poweroff() failed to disable the regulators which as a side effect made calling poweroff() twice ok. Now that poweroff() correctly disables the regulators, doing this twice triggers a WARN() in the regulator core: unbalanced disables for regulator-dummy WARNING: CPU: 1 PID: 92 at drivers/regulator/core.c:2999 _regulator_disable ... Fix lis3lv02d_i2c_suspend() to not call poweroff() a second time if already runtime-suspended and add a poweron() call when necessary to make wakeup work. lis3lv02d_i2c_resume() has similar issues, with an added weirness that it always powers on the device if it is runtime suspended, after which the first runtime-resume will call poweron() again, causing the enabled count for the regulator to increase by 1 every suspend/resume. These unbalanced regulator_enable() calls cause the regulator to never be turned off and trigger the following WARN() on driver unbind: WARNING: CPU: 1 PID: 1724 at drivers/regulator/core.c:2396 _regulator_put Fix this by making lis3lv02d_i2c_resume() mirror the new suspend().
CVE-2024-35823 In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the buffer"). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers.
CVE-2024-35822 In the Linux kernel, the following vulnerability has been resolved: usb: udc: remove warning when queue disabled ep It is possible trigger below warning message from mass storage function, WARNING: CPU: 6 PID: 3839 at drivers/usb/gadget/udc/core.c:294 usb_ep_queue+0x7c/0x104 pc : usb_ep_queue+0x7c/0x104 lr : fsg_main_thread+0x494/0x1b3c Root cause is mass storage function try to queue request from main thread, but other thread may already disable ep when function disable. As there is no function failure in the driver, in order to avoid effort to fix warning, change WARN_ON_ONCE() in usb_ep_queue() to pr_debug().
CVE-2024-35821 In the Linux kernel, the following vulnerability has been resolved: ubifs: Set page uptodate in the correct place Page cache reads are lockless, so setting the freshly allocated page uptodate before we've overwritten it with the data it's supposed to have in it will allow a simultaneous reader to see old data. Move the call to SetPageUptodate into ubifs_write_end(), which is after we copied the new data into the page.
CVE-2024-35819 In the Linux kernel, the following vulnerability has been resolved: soc: fsl: qbman: Use raw spinlock for cgr_lock smp_call_function always runs its callback in hard IRQ context, even on PREEMPT_RT, where spinlocks can sleep. So we need to use a raw spinlock for cgr_lock to ensure we aren't waiting on a sleeping task. Although this bug has existed for a while, it was not apparent until commit ef2a8d5478b9 ("net: dpaa: Adjust queue depth on rate change") which invokes smp_call_function_single via qman_update_cgr_safe every time a link goes up or down.
CVE-2024-35818 In the Linux kernel, the following vulnerability has been resolved: LoongArch: Define the __io_aw() hook as mmiowb() Commit fb24ea52f78e0d595852e ("drivers: Remove explicit invocations of mmiowb()") remove all mmiowb() in drivers, but it says: "NOTE: mmiowb() has only ever guaranteed ordering in conjunction with spin_unlock(). However, pairing each mmiowb() removal in this patch with the corresponding call to spin_unlock() is not at all trivial, so there is a small chance that this change may regress any drivers incorrectly relying on mmiowb() to order MMIO writes between CPUs using lock-free synchronisation." The mmio in radeon_ring_commit() is protected by a mutex rather than a spinlock, but in the mutex fastpath it behaves similar to spinlock. We can add mmiowb() calls in the radeon driver but the maintainer says he doesn't like such a workaround, and radeon is not the only example of mutex protected mmio. So we should extend the mmiowb tracking system from spinlock to mutex, and maybe other locking primitives. This is not easy and error prone, so we solve it in the architectural code, by simply defining the __io_aw() hook as mmiowb(). And we no longer need to override queued_spin_unlock() so use the generic definition. Without this, we get such an error when run 'glxgears' on weak ordering architectures such as LoongArch: radeon 0000:04:00.0: ring 0 stalled for more than 10324msec radeon 0000:04:00.0: ring 3 stalled for more than 10240msec radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000001f412 last fence id 0x000000000001f414 on ring 3) radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000000f940 last fence id 0x000000000000f941 on ring 0) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
CVE-2024-35817 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: amdgpu_ttm_gart_bind set gtt bound flag Otherwise after the GTT bo is released, the GTT and gart space is freed but amdgpu_ttm_backend_unbind will not clear the gart page table entry and leave valid mapping entry pointing to the stale system page. Then if GPU access the gart address mistakely, it will read undefined value instead page fault, harder to debug and reproduce the real issue.
CVE-2024-35816 In the Linux kernel, the following vulnerability has been resolved: firewire: ohci: prevent leak of left-over IRQ on unbind Commit 5a95f1ded28691e6 ("firewire: ohci: use devres for requested IRQ") also removed the call to free_irq() in pci_remove(), leading to a leftover irq of devm_request_irq() at pci_disable_msi() in pci_remove() when unbinding the driver from the device remove_proc_entry: removing non-empty directory 'irq/136', leaking at least 'firewire_ohci' Call Trace: ? remove_proc_entry+0x19c/0x1c0 ? __warn+0x81/0x130 ? remove_proc_entry+0x19c/0x1c0 ? report_bug+0x171/0x1a0 ? console_unlock+0x78/0x120 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? remove_proc_entry+0x19c/0x1c0 unregister_irq_proc+0xf4/0x120 free_desc+0x3d/0xe0 ? kfree+0x29f/0x2f0 irq_free_descs+0x47/0x70 msi_domain_free_locked.part.0+0x19d/0x1d0 msi_domain_free_irqs_all_locked+0x81/0xc0 pci_free_msi_irqs+0x12/0x40 pci_disable_msi+0x4c/0x60 pci_remove+0x9d/0xc0 [firewire_ohci 01b483699bebf9cb07a3d69df0aa2bee71db1b26] pci_device_remove+0x37/0xa0 device_release_driver_internal+0x19f/0x200 unbind_store+0xa1/0xb0 remove irq with devm_free_irq() before pci_disable_msi() also remove it in fail_msi: of pci_probe() as this would lead to an identical leak
CVE-2024-35815 In the Linux kernel, the following vulnerability has been resolved: fs/aio: Check IOCB_AIO_RW before the struct aio_kiocb conversion The first kiocb_set_cancel_fn() argument may point at a struct kiocb that is not embedded inside struct aio_kiocb. With the current code, depending on the compiler, the req->ki_ctx read happens either before the IOCB_AIO_RW test or after that test. Move the req->ki_ctx read such that it is guaranteed that the IOCB_AIO_RW test happens first.
CVE-2024-35814 In the Linux kernel, the following vulnerability has been resolved: swiotlb: Fix double-allocation of slots due to broken alignment handling Commit bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix"), which was a fix for commit 0eee5ae10256 ("swiotlb: fix slot alignment checks"), causes a functional regression with vsock in a virtual machine using bouncing via a restricted DMA SWIOTLB pool. When virtio allocates the virtqueues for the vsock device using dma_alloc_coherent(), the SWIOTLB search can return page-unaligned allocations if 'area->index' was left unaligned by a previous allocation from the buffer: # Final address in brackets is the SWIOTLB address returned to the caller | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800) | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800) | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800) This ends badly (typically buffer corruption and/or a hang) because swiotlb_alloc() is expecting a page-aligned allocation and so blindly returns a pointer to the 'struct page' corresponding to the allocation, therefore double-allocating the first half (2KiB slot) of the 4KiB page. Fix the problem by treating the allocation alignment separately to any additional alignment requirements from the device, using the maximum of the two as the stride to search the buffer slots and taking care to ensure a minimum of page-alignment for buffers larger than a page. This also resolves swiotlb allocation failures occuring due to the inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and resulting in alignment requirements exceeding swiotlb_max_mapping_size().
CVE-2024-35813 In the Linux kernel, the following vulnerability has been resolved: mmc: core: Avoid negative index with array access Commit 4d0c8d0aef63 ("mmc: core: Use mrq.sbc in close-ended ffu") assigns prev_idata = idatas[i - 1], but doesn't check that the iterator i is greater than zero. Let's fix this by adding a check.
CVE-2024-35812 In the Linux kernel, the following vulnerability has been resolved: usb: cdc-wdm: close race between read and workqueue wdm_read() cannot race with itself. However, in service_outstanding_interrupt() it can race with the workqueue, which can be triggered by error handling. Hence we need to make sure that the WDM_RESPONDING flag is not just only set but tested.
CVE-2024-35811 In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach This is the candidate patch of CVE-2023-47233 : https://nvd.nist.gov/vuln/detail/CVE-2023-47233 In brcm80211 driver,it starts with the following invoking chain to start init a timeout worker: ->brcmf_usb_probe ->brcmf_usb_probe_cb ->brcmf_attach ->brcmf_bus_started ->brcmf_cfg80211_attach ->wl_init_priv ->brcmf_init_escan ->INIT_WORK(&cfg->escan_timeout_work, brcmf_cfg80211_escan_timeout_worker); If we disconnect the USB by hotplug, it will call brcmf_usb_disconnect to make cleanup. The invoking chain is : brcmf_usb_disconnect ->brcmf_usb_disconnect_cb ->brcmf_detach ->brcmf_cfg80211_detach ->kfree(cfg); While the timeout woker may still be running. This will cause a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker. Fix it by deleting the timer and canceling the worker in brcmf_cfg80211_detach. [arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free]
CVE-2024-35810 In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix the lifetime of the bo cursor memory The cleanup can be dispatched while the atomic update is still active, which means that the memory acquired in the atomic update needs to not be invalidated by the cleanup. The buffer objects in vmw_plane_state instead of using the builtin map_and_cache were trying to handle the lifetime of the mapped memory themselves, leading to crashes. Use the map_and_cache instead of trying to manage the lifetime of the buffer objects held by the vmw_plane_state. Fixes kernel oops'es in IGT's kms_cursor_legacy forked-bo.
CVE-2024-35809 In the Linux kernel, the following vulnerability has been resolved: PCI/PM: Drain runtime-idle callbacks before driver removal A race condition between the .runtime_idle() callback and the .remove() callback in the rtsx_pcr PCI driver leads to a kernel crash due to an unhandled page fault [1]. The problem is that rtsx_pci_runtime_idle() is not expected to be running after pm_runtime_get_sync() has been called, but the latter doesn't really guarantee that. It only guarantees that the suspend and resume callbacks will not be running when it returns. However, if a .runtime_idle() callback is already running when pm_runtime_get_sync() is called, the latter will notice that the runtime PM status of the device is RPM_ACTIVE and it will return right away without waiting for the former to complete. In fact, it cannot wait for .runtime_idle() to complete because it may be called from that callback (it arguably does not make much sense to do that, but it is not strictly prohibited). Thus in general, whoever is providing a .runtime_idle() callback needs to protect it from running in parallel with whatever code runs after pm_runtime_get_sync(). [Note that .runtime_idle() will not start after pm_runtime_get_sync() has returned, but it may continue running then if it has started earlier.] One way to address that race condition is to call pm_runtime_barrier() after pm_runtime_get_sync() (not before it, because a nonzero value of the runtime PM usage counter is necessary to prevent runtime PM callbacks from being invoked) to wait for the .runtime_idle() callback to complete should it be running at that point. A suitable place for doing that is in pci_device_remove() which calls pm_runtime_get_sync() before removing the driver, so it may as well call pm_runtime_barrier() subsequently, which will prevent the race in question from occurring, not just in the rtsx_pcr driver, but in any PCI drivers providing .runtime_idle() callbacks.
CVE-2024-35808 In the Linux kernel, the following vulnerability has been resolved: md/dm-raid: don't call md_reap_sync_thread() directly Currently md_reap_sync_thread() is called from raid_message() directly without holding 'reconfig_mutex', this is definitely unsafe because md_reap_sync_thread() can change many fields that is protected by 'reconfig_mutex'. However, hold 'reconfig_mutex' here is still problematic because this will cause deadlock, for example, commit 130443d60b1b ("md: refactor idle/frozen_sync_thread() to fix deadlock"). Fix this problem by using stop_sync_thread() to unregister sync_thread, like md/raid did.
CVE-2024-35807 In the Linux kernel, the following vulnerability has been resolved: ext4: fix corruption during on-line resize We observed a corruption during on-line resize of a file system that is larger than 16 TiB with 4k block size. With having more then 2^32 blocks resize_inode is turned off by default by mke2fs. The issue can be reproduced on a smaller file system for convenience by explicitly turning off resize_inode. An on-line resize across an 8 GiB boundary (the size of a meta block group in this setup) then leads to a corruption: dev=/dev/<some_dev> # should be >= 16 GiB mkdir -p /corruption /sbin/mke2fs -t ext4 -b 4096 -O ^resize_inode $dev $((2 * 2**21 - 2**15)) mount -t ext4 $dev /corruption dd if=/dev/zero bs=4096 of=/corruption/test count=$((2*2**21 - 4*2**15)) sha1sum /corruption/test # 79d2658b39dcfd77274e435b0934028adafaab11 /corruption/test /sbin/resize2fs $dev $((2*2**21)) # drop page cache to force reload the block from disk echo 1 > /proc/sys/vm/drop_caches sha1sum /corruption/test # 3c2abc63cbf1a94c9e6977e0fbd72cd832c4d5c3 /corruption/test 2^21 = 2^15*2^6 equals 8 GiB whereof 2^15 is the number of blocks per block group and 2^6 are the number of block groups that make a meta block group. The last checksum might be different depending on how the file is laid out across the physical blocks. The actual corruption occurs at physical block 63*2^15 = 2064384 which would be the location of the backup of the meta block group's block descriptor. During the on-line resize the file system will be converted to meta_bg starting at s_first_meta_bg which is 2 in the example - meaning all block groups after 16 GiB. However, in ext4_flex_group_add we might add block groups that are not part of the first meta block group yet. In the reproducer we achieved this by substracting the size of a whole block group from the point where the meta block group would start. This must be considered when updating the backup block group descriptors to follow the non-meta_bg layout. The fix is to add a test whether the group to add is already part of the meta block group or not.
CVE-2024-35806 In the Linux kernel, the following vulnerability has been resolved: soc: fsl: qbman: Always disable interrupts when taking cgr_lock smp_call_function_single disables IRQs when executing the callback. To prevent deadlocks, we must disable IRQs when taking cgr_lock elsewhere. This is already done by qman_update_cgr and qman_delete_cgr; fix the other lockers.
CVE-2024-35805 In the Linux kernel, the following vulnerability has been resolved: dm snapshot: fix lockup in dm_exception_table_exit There was reported lockup when we exit a snapshot with many exceptions. Fix this by adding "cond_resched" to the loop that frees the exceptions.
CVE-2024-35804 In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Mark target gfn of emulated atomic instruction as dirty When emulating an atomic access on behalf of the guest, mark the target gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault. This fixes a bug where KVM effectively corrupts guest memory during live migration by writing to guest memory without informing userspace that the page is dirty. Marking the page dirty got unintentionally dropped when KVM's emulated CMPXCHG was converted to do a user access. Before that, KVM explicitly mapped the guest page into kernel memory, and marked the page dirty during the unmap phase. Mark the page dirty even if the CMPXCHG fails, as the old data is written back on failure, i.e. the page is still written. The value written is guaranteed to be the same because the operation is atomic, but KVM's ABI is that all writes are dirty logged regardless of the value written. And more importantly, that's what KVM did before the buggy commit. Huge kudos to the folks on the Cc list (and many others), who did all the actual work of triaging and debugging. base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64
CVE-2024-35803 In the Linux kernel, the following vulnerability has been resolved: x86/efistub: Call mixed mode boot services on the firmware's stack Normally, the EFI stub calls into the EFI boot services using the stack that was live when the stub was entered. According to the UEFI spec, this stack needs to be at least 128k in size - this might seem large but all asynchronous processing and event handling in EFI runs from the same stack and so quite a lot of space may be used in practice. In mixed mode, the situation is a bit different: the bootloader calls the 32-bit EFI stub entry point, which calls the decompressor's 32-bit entry point, where the boot stack is set up, using a fixed allocation of 16k. This stack is still in use when the EFI stub is started in 64-bit mode, and so all calls back into the EFI firmware will be using the decompressor's limited boot stack. Due to the placement of the boot stack right after the boot heap, any stack overruns have gone unnoticed. However, commit 5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code") moved the definition of the boot heap into C code, and now the boot stack is placed right at the base of BSS, where any overruns will corrupt the end of the .data section. While it would be possible to work around this by increasing the size of the boot stack, doing so would affect all x86 systems, and mixed mode systems are a tiny (and shrinking) fraction of the x86 installed base. So instead, record the firmware stack pointer value when entering from the 32-bit firmware, and switch to this stack every time a EFI boot service call is made.
CVE-2024-35801 In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in order to avoid unnecessary writes to the MSR. On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which wipes out any stale state. But the per CPU cached xfd value is not reset, which brings them out of sync. As a consequence a subsequent xfd_update_state() might fail to update the MSR which in turn can result in XRSTOR raising a #NM in kernel space, which crashes the kernel. To fix this, introduce xfd_set_state() to write xfd_state together with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD.
CVE-2024-35800 In the Linux kernel, the following vulnerability has been resolved: efi: fix panic in kdump kernel Check if get_next_variable() is actually valid pointer before calling it. In kdump kernel this method is set to NULL that causes panic during the kexec-ed kernel boot. Tested with QEMU and OVMF firmware.
CVE-2024-35799 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Prevent crash when disable stream [Why] Disabling stream encoder invokes a function that no longer exists. [How] Check if the function declaration is NULL in disable stream encoder.
CVE-2024-35798 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race in read_extent_buffer_pages() There are reports from tree-checker that detects corrupted nodes, without any obvious pattern so possibly an overwrite in memory. After some debugging it turns out there's a race when reading an extent buffer the uptodate status can be missed. To prevent concurrent reads for the same extent buffer, read_extent_buffer_pages() performs these checks: /* (1) */ if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) return 0; /* (2) */ if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) goto done; At this point, it seems safe to start the actual read operation. Once that completes, end_bbio_meta_read() does /* (3) */ set_extent_buffer_uptodate(eb); /* (4) */ clear_bit(EXTENT_BUFFER_READING, &eb->bflags); Normally, this is enough to ensure only one read happens, and all other callers wait for it to finish before returning. Unfortunately, there is a racey interleaving: Thread A | Thread B | Thread C ---------+----------+--------- (1) | | | (1) | (2) | | (3) | | (4) | | | (2) | | | (1) When this happens, thread B kicks of an unnecessary read. Worse, thread C will see UPTODATE set and return immediately, while the read from thread B is still in progress. This race could result in tree-checker errors like this as the extent buffer is concurrently modified: BTRFS critical (device dm-0): corrupted node, root=256 block=8550954455682405139 owner mismatch, have 11858205567642294356 expect [256, 18446744073709551360] Fix it by testing UPTODATE again after setting the READING bit, and if it's been set, skip the unnecessary read. [ minor update of changelog ]
CVE-2024-35797 In the Linux kernel, the following vulnerability has been resolved: mm: cachestat: fix two shmem bugs When cachestat on shmem races with swapping and invalidation, there are two possible bugs: 1) A swapin error can have resulted in a poisoned swap entry in the shmem inode's xarray. Calling get_shadow_from_swap_cache() on it will result in an out-of-bounds access to swapper_spaces[]. Validate the entry with non_swap_entry() before going further. 2) When we find a valid swap entry in the shmem's inode, the shadow entry in the swapcache might not exist yet: swap IO is still in progress and we're before __remove_mapping; swapin, invalidation, or swapoff have removed the shadow from swapcache after we saw the shmem swap entry. This will send a NULL to workingset_test_recent(). The latter purely operates on pointer bits, so it won't crash - node 0, memcg ID 0, eviction timestamp 0, etc. are all valid inputs - but it's a bogus test. In theory that could result in a false "recently evicted" count. Such a false positive wouldn't be the end of the world. But for code clarity and (future) robustness, be explicit about this case. Bail on get_shadow_from_swap_cache() returning NULL.
CVE-2024-35796 In the Linux kernel, the following vulnerability has been resolved: net: ll_temac: platform_get_resource replaced by wrong function The function platform_get_resource was replaced with devm_platform_ioremap_resource_byname and is called using 0 as name. This eventually ends up in platform_get_resource_byname in the call stack, where it causes a null pointer in strcmp. if (type == resource_type(r) && !strcmp(r->name, name)) It should have been replaced with devm_platform_ioremap_resource.
CVE-2024-35795 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix deadlock while reading mqd from debugfs An errant disk backup on my desktop got into debugfs and triggered the following deadlock scenario in the amdgpu debugfs files. The machine also hard-resets immediately after those lines are printed (although I wasn't able to reproduce that part when reading by hand): [ 1318.016074][ T1082] ====================================================== [ 1318.016607][ T1082] WARNING: possible circular locking dependency detected [ 1318.017107][ T1082] 6.8.0-rc7-00015-ge0c8221b72c0 #17 Not tainted [ 1318.017598][ T1082] ------------------------------------------------------ [ 1318.018096][ T1082] tar/1082 is trying to acquire lock: [ 1318.018585][ T1082] ffff98c44175d6a0 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x40/0x80 [ 1318.019084][ T1082] [ 1318.019084][ T1082] but task is already holding lock: [ 1318.020052][ T1082] ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu] [ 1318.020607][ T1082] [ 1318.020607][ T1082] which lock already depends on the new lock. [ 1318.020607][ T1082] [ 1318.022081][ T1082] [ 1318.022081][ T1082] the existing dependency chain (in reverse order) is: [ 1318.023083][ T1082] [ 1318.023083][ T1082] -> #2 (reservation_ww_class_mutex){+.+.}-{3:3}: [ 1318.024114][ T1082] __ww_mutex_lock.constprop.0+0xe0/0x12f0 [ 1318.024639][ T1082] ww_mutex_lock+0x32/0x90 [ 1318.025161][ T1082] dma_resv_lockdep+0x18a/0x330 [ 1318.025683][ T1082] do_one_initcall+0x6a/0x350 [ 1318.026210][ T1082] kernel_init_freeable+0x1a3/0x310 [ 1318.026728][ T1082] kernel_init+0x15/0x1a0 [ 1318.027242][ T1082] ret_from_fork+0x2c/0x40 [ 1318.027759][ T1082] ret_from_fork_asm+0x11/0x20 [ 1318.028281][ T1082] [ 1318.028281][ T1082] -> #1 (reservation_ww_class_acquire){+.+.}-{0:0}: [ 1318.029297][ T1082] dma_resv_lockdep+0x16c/0x330 [ 1318.029790][ T1082] do_one_initcall+0x6a/0x350 [ 1318.030263][ T1082] kernel_init_freeable+0x1a3/0x310 [ 1318.030722][ T1082] kernel_init+0x15/0x1a0 [ 1318.031168][ T1082] ret_from_fork+0x2c/0x40 [ 1318.031598][ T1082] ret_from_fork_asm+0x11/0x20 [ 1318.032011][ T1082] [ 1318.032011][ T1082] -> #0 (&mm->mmap_lock){++++}-{3:3}: [ 1318.032778][ T1082] __lock_acquire+0x14bf/0x2680 [ 1318.033141][ T1082] lock_acquire+0xcd/0x2c0 [ 1318.033487][ T1082] __might_fault+0x58/0x80 [ 1318.033814][ T1082] amdgpu_debugfs_mqd_read+0x103/0x250 [amdgpu] [ 1318.034181][ T1082] full_proxy_read+0x55/0x80 [ 1318.034487][ T1082] vfs_read+0xa7/0x360 [ 1318.034788][ T1082] ksys_read+0x70/0xf0 [ 1318.035085][ T1082] do_syscall_64+0x94/0x180 [ 1318.035375][ T1082] entry_SYSCALL_64_after_hwframe+0x46/0x4e [ 1318.035664][ T1082] [ 1318.035664][ T1082] other info that might help us debug this: [ 1318.035664][ T1082] [ 1318.036487][ T1082] Chain exists of: [ 1318.036487][ T1082] &mm->mmap_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex [ 1318.036487][ T1082] [ 1318.037310][ T1082] Possible unsafe locking scenario: [ 1318.037310][ T1082] [ 1318.037838][ T1082] CPU0 CPU1 [ 1318.038101][ T1082] ---- ---- [ 1318.038350][ T1082] lock(reservation_ww_class_mutex); [ 1318.038590][ T1082] lock(reservation_ww_class_acquire); [ 1318.038839][ T1082] lock(reservation_ww_class_mutex); [ 1318.039083][ T1082] rlock(&mm->mmap_lock); [ 1318.039328][ T1082] [ 1318.039328][ T1082] *** DEADLOCK *** [ 1318.039328][ T1082] [ 1318.040029][ T1082] 1 lock held by tar/1082: [ 1318.040259][ T1082] #0: ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu] [ 1318.040560][ T1082] [ 1318.040560][ T1082] stack backtrace: [ ---truncated---
CVE-2024-35794 In the Linux kernel, the following vulnerability has been resolved: dm-raid: really frozen sync_thread during suspend 1) commit f52f5c71f3d4 ("md: fix stopping sync thread") remove MD_RECOVERY_FROZEN from __md_stop_writes() and doesn't realize that dm-raid relies on __md_stop_writes() to frozen sync_thread indirectly. Fix this problem by adding MD_RECOVERY_FROZEN in md_stop_writes(), and since stop_sync_thread() is only used for dm-raid in this case, also move stop_sync_thread() to md_stop_writes(). 2) The flag MD_RECOVERY_FROZEN doesn't mean that sync thread is frozen, it only prevent new sync_thread to start, and it can't stop the running sync thread; In order to frozen sync_thread, after seting the flag, stop_sync_thread() should be used. 3) The flag MD_RECOVERY_FROZEN doesn't mean that writes are stopped, use it as condition for md_stop_writes() in raid_postsuspend() doesn't look correct. Consider that reentrant stop_sync_thread() do nothing, always call md_stop_writes() in raid_postsuspend(). 4) raid_message can set/clear the flag MD_RECOVERY_FROZEN at anytime, and if MD_RECOVERY_FROZEN is cleared while the array is suspended, new sync_thread can start unexpected. Fix this by disallow raid_message() to change sync_thread status during suspend. Note that after commit f52f5c71f3d4 ("md: fix stopping sync thread"), the test shell/lvconvert-raid-reshape.sh start to hang in stop_sync_thread(), and with previous fixes, the test won't hang there anymore, however, the test will still fail and complain that ext4 is corrupted. And with this patch, the test won't hang due to stop_sync_thread() or fail due to ext4 is corrupted anymore. However, there is still a deadlock related to dm-raid456 that will be fixed in following patches.
CVE-2024-35793 In the Linux kernel, the following vulnerability has been resolved: debugfs: fix wait/cancellation handling during remove Ben Greear further reports deadlocks during concurrent debugfs remove while files are being accessed, even though the code in question now uses debugfs cancellations. Turns out that despite all the review on the locking, we missed completely that the logic is wrong: if the refcount hits zero we can finish (and need not wait for the completion), but if it doesn't we have to trigger all the cancellations. As written, we can _never_ get into the loop triggering the cancellations. Fix this, and explain it better while at it.
CVE-2024-35792 In the Linux kernel, the following vulnerability has been resolved: crypto: rk3288 - Fix use after free in unprepare The unprepare call must be carried out before the finalize call as the latter can free the request.
CVE-2024-35791 In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region() Do the cache flush of converted pages in svm_register_enc_region() before dropping kvm->lock to fix use-after-free issues where region and/or its array of pages could be freed by a different task, e.g. if userspace has __unregister_enc_region_locked() already queued up for the region. Note, the "obvious" alternative of using local variables doesn't fully resolve the bug, as region->pages is also dynamically allocated. I.e. the region structure itself would be fine, but region->pages could be freed. Flushing multiple pages under kvm->lock is unfortunate, but the entire flow is a rare slow path, and the manual flush is only needed on CPUs that lack coherency for encrypted memory.
CVE-2024-35790 In the Linux kernel, the following vulnerability has been resolved: usb: typec: altmodes/displayport: create sysfs nodes as driver's default device attribute group The DisplayPort driver's sysfs nodes may be present to the userspace before typec_altmode_set_drvdata() completes in dp_altmode_probe. This means that a sysfs read can trigger a NULL pointer error by deferencing dp->hpd in hpd_show or dp->lock in pin_assignment_show, as dev_get_drvdata() returns NULL in those cases. Remove manual sysfs node creation in favor of adding attribute group as default for devices bound to the driver. The ATTRIBUTE_GROUPS() macro is not used here otherwise the path to the sysfs nodes is no longer compliant with the ABI.
CVE-2024-35789 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes When moving a station out of a VLAN and deleting the VLAN afterwards, the fast_rx entry still holds a pointer to the VLAN's netdev, which can cause use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx after the VLAN change.
CVE-2024-35788 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix bounds check for dcn35 DcfClocks [Why] NumFclkLevelsEnabled is used for DcfClocks bounds check instead of designated NumDcfClkLevelsEnabled. That can cause array index out-of-bounds access. [How] Use designated variable for dcn35 DcfClocks bounds check.
CVE-2024-35787 In the Linux kernel, the following vulnerability has been resolved: md/md-bitmap: fix incorrect usage for sb_index Commit d7038f951828 ("md-bitmap: don't use ->index for pages backing the bitmap file") removed page->index from bitmap code, but left wrong code logic for clustered-md. current code never set slot offset for cluster nodes, will sometimes cause crash in clustered env. Call trace (partly): md_bitmap_file_set_bit+0x110/0x1d8 [md_mod] md_bitmap_startwrite+0x13c/0x240 [md_mod] raid1_make_request+0x6b0/0x1c08 [raid1] md_handle_request+0x1dc/0x368 [md_mod] md_submit_bio+0x80/0xf8 [md_mod] __submit_bio+0x178/0x300 submit_bio_noacct_nocheck+0x11c/0x338 submit_bio_noacct+0x134/0x614 submit_bio+0x28/0xdc submit_bh_wbc+0x130/0x1cc submit_bh+0x1c/0x28
CVE-2024-35786 In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: fix stale locked mutex in nouveau_gem_ioctl_pushbuf If VM_BIND is enabled on the client the legacy submission ioctl can't be used, however if a client tries to do so regardless it will return an error. In this case the clients mutex remained unlocked leading to a deadlock inside nouveau_drm_postclose or any other nouveau ioctl call.
CVE-2024-35785 In the Linux kernel, the following vulnerability has been resolved: tee: optee: Fix kernel panic caused by incorrect error handling The error path while failing to register devices on the TEE bus has a bug leading to kernel panic as follows: [ 15.398930] Unable to handle kernel paging request at virtual address ffff07ed00626d7c [ 15.406913] Mem abort info: [ 15.409722] ESR = 0x0000000096000005 [ 15.413490] EC = 0x25: DABT (current EL), IL = 32 bits [ 15.418814] SET = 0, FnV = 0 [ 15.421878] EA = 0, S1PTW = 0 [ 15.425031] FSC = 0x05: level 1 translation fault [ 15.429922] Data abort info: [ 15.432813] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 15.438310] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 15.443372] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 15.448697] swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000d9e3e000 [ 15.455413] [ffff07ed00626d7c] pgd=1800000bffdf9003, p4d=1800000bffdf9003, pud=0000000000000000 [ 15.464146] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP Commit 7269cba53d90 ("tee: optee: Fix supplicant based device enumeration") lead to the introduction of this bug. So fix it appropriately.
CVE-2024-35784 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock with fiemap and extent locking While working on the patchset to remove extent locking I got a lockdep splat with fiemap and pagefaulting with my new extent lock replacement lock. This deadlock exists with our normal code, we just don't have lockdep annotations with the extent locking so we've never noticed it. Since we're copying the fiemap extent to user space on every iteration we have the chance of pagefaulting. Because we hold the extent lock for the entire range we could mkwrite into a range in the file that we have mmap'ed. This would deadlock with the following stack trace [<0>] lock_extent+0x28d/0x2f0 [<0>] btrfs_page_mkwrite+0x273/0x8a0 [<0>] do_page_mkwrite+0x50/0xb0 [<0>] do_fault+0xc1/0x7b0 [<0>] __handle_mm_fault+0x2fa/0x460 [<0>] handle_mm_fault+0xa4/0x330 [<0>] do_user_addr_fault+0x1f4/0x800 [<0>] exc_page_fault+0x7c/0x1e0 [<0>] asm_exc_page_fault+0x26/0x30 [<0>] rep_movs_alternative+0x33/0x70 [<0>] _copy_to_user+0x49/0x70 [<0>] fiemap_fill_next_extent+0xc8/0x120 [<0>] emit_fiemap_extent+0x4d/0xa0 [<0>] extent_fiemap+0x7f8/0xad0 [<0>] btrfs_fiemap+0x49/0x80 [<0>] __x64_sys_ioctl+0x3e1/0xb50 [<0>] do_syscall_64+0x94/0x1a0 [<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 I wrote an fstest to reproduce this deadlock without my replacement lock and verified that the deadlock exists with our existing locking. To fix this simply don't take the extent lock for the entire duration of the fiemap. This is safe in general because we keep track of where we are when we're searching the tree, so if an ordered extent updates in the middle of our fiemap call we'll still emit the correct extents because we know what offset we were on before. The only place we maintain the lock is searching delalloc. Since the delalloc stuff can change during writeback we want to lock the extent range so we have a consistent view of delalloc at the time we're checking to see if we need to set the delalloc flag. With this patch applied we no longer deadlock with my testcase.
CVE-2024-32878 Llama.cpp is LLM inference in C/C++. There is a use of uninitialized heap variable vulnerability in gguf_init_from_file, the code will free this uninitialized variable later. In a simple POC, it will directly cause a crash. If the file is carefully constructed, it may be possible to control this uninitialized value and cause arbitrary address free problems. This may further lead to be exploited. Causes llama.cpp to crash (DoS) and may even lead to arbitrary code execution (RCE). This vulnerability has been patched in commit b2740.
CVE-2024-3177 A security issue was discovered in Kubernetes where users may be able to launch containers that bypass the mountable secrets policy enforced by the ServiceAccount admission plugin when using containers, init containers, and ephemeral containers with the envFrom field populated. The policy ensures pods running with a service account may only reference secrets specified in the service account&#8217;s secrets field. Kubernetes clusters are only affected if the ServiceAccount admission plugin and the kubernetes.io/enforce-mountable-secrets annotation are used together with containers, init containers, and ephemeral containers with the envFrom field populated.
CVE-2024-31226 Sunshine is a self-hosted game stream host for Moonlight. Users who ran Sunshine versions 0.17.0 through 0.22.2 as a service on Windows may be impacted when terminating the service if an attacked placed a file named `C:\Program.exe`, `C:\Program.bat`, or `C:\Program.cmd` on the user's computer. This attack vector isn't exploitable unless the user has manually loosened ACLs on the system drive. If the user's system locale is not English, then the name of the executable will likely vary. Version 0.23.0 contains a patch for the issue. Some workarounds are available. One may identify and block potentially malicious software executed path interception by using application control tools, like Windows Defender Application Control, AppLocker, or Software Restriction Policies where appropriate. Alternatively, ensure that proper permissions and directory access control are set to deny users the ability to write files to the top-level directory `C:`. Require that all executables be placed in write-protected directories.
CVE-2024-29857 An issue was discovered in ECCurve.java and ECCurve.cs in Bouncy Castle Java (BC Java) before 1.78, BC Java LTS before 2.73.6, BC-FJA before 1.0.2.5, and BC C# .Net before 2.3.1. Importing an EC certificate with crafted F2m parameters can lead to excessive CPU consumption during the evaluation of the curve parameters.
CVE-2024-2961 The iconv() function in the GNU C Library versions 2.39 and older may overflow the output buffer passed to it by up to 4 bytes when converting strings to the ISO-2022-CN-EXT character set, which may be used to crash an application or overwrite a neighbouring variable.
CVE-2024-29195 The azure-c-shared-utility is a C library for AMQP/MQTT communication to Azure Cloud Services. This library may be used by the Azure IoT C SDK for communication between IoT Hub and IoT Hub devices. An attacker can cause an integer wraparound or under-allocation or heap buffer overflow due to vulnerabilities in parameter checking mechanism, by exploiting the buffer length parameter in Azure C SDK, which may lead to remote code execution. Requirements for RCE are 1. Compromised Azure account allowing malformed payloads to be sent to the device via IoT Hub service, 2. By passing IoT hub service max message payload limit of 128KB, and 3. Ability to overwrite code space with remote code. Fixed in commit https://github.com/Azure/azure-c-shared-utility/commit/1129147c38ac02ad974c4c701a1e01b2141b9fe2.
CVE-2024-28182 nghttp2 is an implementation of the Hypertext Transfer Protocol version 2 in C. The nghttp2 library prior to version 1.61.0 keeps reading the unbounded number of HTTP/2 CONTINUATION frames even after a stream is reset to keep HPACK context in sync. This causes excessive CPU usage to decode HPACK stream. nghttp2 v1.61.0 mitigates this vulnerability by limiting the number of CONTINUATION frames it accepts per stream. There is no workaround for this vulnerability.
CVE-2024-27437 In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Disable auto-enable of exclusive INTx IRQ Currently for devices requiring masking at the irqchip for INTx, ie. devices without DisINTx support, the IRQ is enabled in request_irq() and subsequently disabled as necessary to align with the masked status flag. This presents a window where the interrupt could fire between these events, resulting in the IRQ incrementing the disable depth twice. This would be unrecoverable for a user since the masked flag prevents nested enables through vfio. Instead, invert the logic using IRQF_NO_AUTOEN such that exclusive INTx is never auto-enabled, then unmask as required.
CVE-2024-27436 In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Stop parsing channels bits when all channels are found. If a usb audio device sets more bits than the amount of channels it could write outside of the map array.
CVE-2024-27435 In the Linux kernel, the following vulnerability has been resolved: nvme: fix reconnection fail due to reserved tag allocation We found a issue on production environment while using NVMe over RDMA, admin_q reconnect failed forever while remote target and network is ok. After dig into it, we found it may caused by a ABBA deadlock due to tag allocation. In my case, the tag was hold by a keep alive request waiting inside admin_q, as we quiesced admin_q while reset ctrl, so the request maked as idle and will not process before reset success. As fabric_q shares tagset with admin_q, while reconnect remote target, we need a tag for connect command, but the only one reserved tag was held by keep alive command which waiting inside admin_q. As a result, we failed to reconnect admin_q forever. In order to fix this issue, I think we should keep two reserved tags for admin queue.
CVE-2024-27434 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: don't set the MFP flag for the GTK The firmware doesn't need the MFP flag for the GTK, it can even make the firmware crash. in case the AP is configured with: group cipher TKIP and MFPC. We would send the GTK with cipher = TKIP and MFP which is of course not possible.
CVE-2024-27433 In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: mt7622-apmixedsys: Fix an error handling path in clk_mt8135_apmixed_probe() 'clk_data' is allocated with mtk_devm_alloc_clk_data(). So calling mtk_free_clk_data() explicitly in the remove function would lead to a double-free. Remove the redundant call.
CVE-2024-27432 In the Linux kernel, the following vulnerability has been resolved: net: ethernet: mtk_eth_soc: fix PPE hanging issue A patch to resolve an issue was found in MediaTek's GPL-licensed SDK: In the mtk_ppe_stop() function, the PPE scan mode is not disabled before disabling the PPE. This can potentially lead to a hang during the process of disabling the PPE. Without this patch, the PPE may experience a hang during the reboot test.
CVE-2024-27431 In the Linux kernel, the following vulnerability has been resolved: cpumap: Zero-initialise xdp_rxq_info struct before running XDP program When running an XDP program that is attached to a cpumap entry, we don't initialise the xdp_rxq_info data structure being used in the xdp_buff that backs the XDP program invocation. Tobias noticed that this leads to random values being returned as the xdp_md->rx_queue_index value for XDP programs running in a cpumap. This means we're basically returning the contents of the uninitialised memory, which is bad. Fix this by zero-initialising the rxq data structure before running the XDP program.
CVE-2024-27419 In the Linux kernel, the following vulnerability has been resolved: netrom: Fix data-races around sysctl_net_busy_read We need to protect the reader reading the sysctl value because the value can be changed concurrently.
CVE-2024-27418 In the Linux kernel, the following vulnerability has been resolved: net: mctp: take ownership of skb in mctp_local_output Currently, mctp_local_output only takes ownership of skb on success, and we may leak an skb if mctp_local_output fails in specific states; the skb ownership isn't transferred until the actual output routing occurs. Instead, make mctp_local_output free the skb on all error paths up to the route action, so it always consumes the passed skb.
CVE-2024-27417 In the Linux kernel, the following vulnerability has been resolved: ipv6: fix potential "struct net" leak in inet6_rtm_getaddr() It seems that if userspace provides a correct IFA_TARGET_NETNSID value but no IFA_ADDRESS and IFA_LOCAL attributes, inet6_rtm_getaddr() returns -EINVAL with an elevated "struct net" refcount.
CVE-2024-27416 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: Fix handling of HCI_EV_IO_CAPA_REQUEST If we received HCI_EV_IO_CAPA_REQUEST while HCI_OP_READ_REMOTE_EXT_FEATURES is yet to be responded assume the remote does support SSP since otherwise this event shouldn't be generated.
CVE-2024-27415 In the Linux kernel, the following vulnerability has been resolved: netfilter: bridge: confirm multicast packets before passing them up the stack conntrack nf_confirm logic cannot handle cloned skbs referencing the same nf_conn entry, which will happen for multicast (broadcast) frames on bridges. Example: macvlan0 | br0 / \ ethX ethY ethX (or Y) receives a L2 multicast or broadcast packet containing an IP packet, flow is not yet in conntrack table. 1. skb passes through bridge and fake-ip (br_netfilter)Prerouting. -> skb->_nfct now references a unconfirmed entry 2. skb is broad/mcast packet. bridge now passes clones out on each bridge interface. 3. skb gets passed up the stack. 4. In macvlan case, macvlan driver retains clone(s) of the mcast skb and schedules a work queue to send them out on the lower devices. The clone skb->_nfct is not a copy, it is the same entry as the original skb. The macvlan rx handler then returns RX_HANDLER_PASS. 5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb. The Macvlan broadcast worker and normal confirm path will race. This race will not happen if step 2 already confirmed a clone. In that case later steps perform skb_clone() with skb->_nfct already confirmed (in hash table). This works fine. But such confirmation won't happen when eb/ip/nftables rules dropped the packets before they reached the nf_confirm step in postrouting. Pablo points out that nf_conntrack_bridge doesn't allow use of stateful nat, so we can safely discard the nf_conn entry and let inet call conntrack again. This doesn't work for bridge netfilter: skb could have a nat transformation. Also bridge nf prevents re-invocation of inet prerouting via 'sabotage_in' hook. Work around this problem by explicit confirmation of the entry at LOCAL_IN time, before upper layer has a chance to clone the unconfirmed entry. The downside is that this disables NAT and conntrack helpers. Alternative fix would be to add locking to all code parts that deal with unconfirmed packets, but even if that could be done in a sane way this opens up other problems, for example: -m physdev --physdev-out eth0 -j SNAT --snat-to 1.2.3.4 -m physdev --physdev-out eth1 -j SNAT --snat-to 1.2.3.5 For multicast case, only one of such conflicting mappings will be created, conntrack only handles 1:1 NAT mappings. Users should set create a setup that explicitly marks such traffic NOTRACK (conntrack bypass) to avoid this, but we cannot auto-bypass them, ruleset might have accept rules for untracked traffic already, so user-visible behaviour would change.
CVE-2024-27414 In the Linux kernel, the following vulnerability has been resolved: rtnetlink: fix error logic of IFLA_BRIDGE_FLAGS writing back In the commit d73ef2d69c0d ("rtnetlink: let rtnl_bridge_setlink checks IFLA_BRIDGE_MODE length"), an adjustment was made to the old loop logic in the function `rtnl_bridge_setlink` to enable the loop to also check the length of the IFLA_BRIDGE_MODE attribute. However, this adjustment removed the `break` statement and led to an error logic of the flags writing back at the end of this function. if (have_flags) memcpy(nla_data(attr), &flags, sizeof(flags)); // attr should point to IFLA_BRIDGE_FLAGS NLA !!! Before the mentioned commit, the `attr` is granted to be IFLA_BRIDGE_FLAGS. However, this is not necessarily true fow now as the updated loop will let the attr point to the last NLA, even an invalid NLA which could cause overflow writes. This patch introduces a new variable `br_flag` to save the NLA pointer that points to IFLA_BRIDGE_FLAGS and uses it to resolve the mentioned error logic.
CVE-2024-27413 In the Linux kernel, the following vulnerability has been resolved: efi/capsule-loader: fix incorrect allocation size gcc-14 notices that the allocation with sizeof(void) on 32-bit architectures is not enough for a 64-bit phys_addr_t: drivers/firmware/efi/capsule-loader.c: In function 'efi_capsule_open': drivers/firmware/efi/capsule-loader.c:295:24: error: allocation of insufficient size '4' for type 'phys_addr_t' {aka 'long long unsigned int'} with size '8' [-Werror=alloc-size] 295 | cap_info->phys = kzalloc(sizeof(void *), GFP_KERNEL); | ^ Use the correct type instead here.
CVE-2024-27412 In the Linux kernel, the following vulnerability has been resolved: power: supply: bq27xxx-i2c: Do not free non existing IRQ The bq27xxx i2c-client may not have an IRQ, in which case client->irq will be 0. bq27xxx_battery_i2c_probe() already has an if (client->irq) check wrapping the request_threaded_irq(). But bq27xxx_battery_i2c_remove() unconditionally calls free_irq(client->irq) leading to: [ 190.310742] ------------[ cut here ]------------ [ 190.310843] Trying to free already-free IRQ 0 [ 190.310861] WARNING: CPU: 2 PID: 1304 at kernel/irq/manage.c:1893 free_irq+0x1b8/0x310 Followed by a backtrace when unbinding the driver. Add an if (client->irq) to bq27xxx_battery_i2c_remove() mirroring probe() to fix this.
CVE-2024-27411 In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: keep DMA buffers required for suspend/resume Nouveau deallocates a few buffers post GPU init which are required for GPU suspend/resume to function correctly. This is likely not as big an issue on systems where the NVGPU is the only GPU, but on multi-GPU set ups it leads to a regression where the kernel module errors and results in a system-wide rendering freeze. This commit addresses that regression by moving the two buffers required for suspend and resume to be deallocated at driver unload instead of post init.
CVE-2024-27410 In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: reject iftype change with mesh ID change It's currently possible to change the mesh ID when the interface isn't yet in mesh mode, at the same time as changing it into mesh mode. This leads to an overwrite of data in the wdev->u union for the interface type it currently has, causing cfg80211_change_iface() to do wrong things when switching. We could probably allow setting an interface to mesh while setting the mesh ID at the same time by doing a different order of operations here, but realistically there's no userspace that's going to do this, so just disallow changes in iftype when setting mesh ID.
CVE-2024-27409 In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw-edma: HDMA: Add sync read before starting the DMA transfer in remote setup The Linked list element and pointer are not stored in the same memory as the HDMA controller register. If the doorbell register is toggled before the full write of the linked list a race condition error will occur. In remote setup we can only use a readl to the memory to assure the full write has occurred.
CVE-2024-27408 In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw-edma: eDMA: Add sync read before starting the DMA transfer in remote setup The Linked list element and pointer are not stored in the same memory as the eDMA controller register. If the doorbell register is toggled before the full write of the linked list a race condition error will occur. In remote setup we can only use a readl to the memory to assure the full write has occurred.
CVE-2024-27407 In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fixed overflow check in mi_enum_attr()
CVE-2024-27406 In the Linux kernel, the following vulnerability has been resolved: lib/Kconfig.debug: TEST_IOV_ITER depends on MMU Trying to run the iov_iter unit test on a nommu system such as the qemu kc705-nommu emulation results in a crash. KTAP version 1 # Subtest: iov_iter # module: kunit_iov_iter 1..9 BUG: failure at mm/nommu.c:318/vmap()! Kernel panic - not syncing: BUG! The test calls vmap() directly, but vmap() is not supported on nommu systems, causing the crash. TEST_IOV_ITER therefore needs to depend on MMU.
CVE-2024-27405 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: ncm: Avoid dropping datagrams of properly parsed NTBs It is observed sometimes when tethering is used over NCM with Windows 11 as host, at some instances, the gadget_giveback has one byte appended at the end of a proper NTB. When the NTB is parsed, unwrap call looks for any leftover bytes in SKB provided by u_ether and if there are any pending bytes, it treats them as a separate NTB and parses it. But in case the second NTB (as per unwrap call) is faulty/corrupt, all the datagrams that were parsed properly in the first NTB and saved in rx_list are dropped. Adding a few custom traces showed the following: [002] d..1 7828.532866: dwc3_gadget_giveback: ep1out: req 000000003868811a length 1025/16384 zsI ==> 0 [002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb toprocess: 1025 [002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342 [002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb seq: 0xce67 [002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x400 [002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb ndp_len: 0x10 [002] d..1 7828.532869: ncm_unwrap_ntb: K: Parsed NTB with 1 frames In this case, the giveback is of 1025 bytes and block length is 1024. The rest 1 byte (which is 0x00) won't be parsed resulting in drop of all datagrams in rx_list. Same is case with packets of size 2048: [002] d..1 7828.557948: dwc3_gadget_giveback: ep1out: req 0000000011dfd96e length 2049/16384 zsI ==> 0 [002] d..1 7828.557949: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342 [002] d..1 7828.557950: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x800 Lecroy shows one byte coming in extra confirming that the byte is coming in from PC: Transfer 2959 - Bytes Transferred(1025) Timestamp((18.524 843 590) - Transaction 8391 - Data(1025 bytes) Timestamp(18.524 843 590) --- Packet 4063861 Data(1024 bytes) Duration(2.117us) Idle(14.700ns) Timestamp(18.524 843 590) --- Packet 4063863 Data(1 byte) Duration(66.160ns) Time(282.000ns) Timestamp(18.524 845 722) According to Windows driver, no ZLP is needed if wBlockLength is non-zero, because the non-zero wBlockLength has already told the function side the size of transfer to be expected. However, there are in-market NCM devices that rely on ZLP as long as the wBlockLength is multiple of wMaxPacketSize. To deal with such devices, it pads an extra 0 at end so the transfer is no longer multiple of wMaxPacketSize.
CVE-2024-27404 In the Linux kernel, the following vulnerability has been resolved: mptcp: fix data races on remote_id Similar to the previous patch, address the data race on remote_id, adding the suitable ONCE annotations.
CVE-2024-27403 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_flow_offload: reset dst in route object after setting up flow dst is transferred to the flow object, route object does not own it anymore. Reset dst in route object, otherwise if flow_offload_add() fails, error path releases dst twice, leading to a refcount underflow.
CVE-2024-27402 In the Linux kernel, the following vulnerability has been resolved: phonet/pep: fix racy skb_queue_empty() use The receive queues are protected by their respective spin-lock, not the socket lock. This could lead to skb_peek() unexpectedly returning NULL or a pointer to an already dequeued socket buffer.
CVE-2024-27401 In the Linux kernel, the following vulnerability has been resolved: firewire: nosy: ensure user_length is taken into account when fetching packet contents Ensure that packet_buffer_get respects the user_length provided. If the length of the head packet exceeds the user_length, packet_buffer_get will now return 0 to signify to the user that no data were read and a larger buffer size is required. Helps prevent user space overflows.
CVE-2024-27400 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: once more fix the call oder in amdgpu_ttm_move() v2 This reverts drm/amdgpu: fix ftrace event amdgpu_bo_move always move on same heap. The basic problem here is that after the move the old location is simply not available any more. Some fixes were suggested, but essentially we should call the move notification before actually moving things because only this way we have the correct order for DMA-buf and VM move notifications as well. Also rework the statistic handling so that we don't update the eviction counter before the move. v2: add missing NULL check
CVE-2024-27399 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout There is a race condition between l2cap_chan_timeout() and l2cap_chan_del(). When we use l2cap_chan_del() to delete the channel, the chan->conn will be set to null. But the conn could be dereferenced again in the mutex_lock() of l2cap_chan_timeout(). As a result the null pointer dereference bug will happen. The KASAN report triggered by POC is shown below: [ 472.074580] ================================================================== [ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0 [ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7 [ 472.075308] [ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.075308] Workqueue: events l2cap_chan_timeout [ 472.075308] Call Trace: [ 472.075308] <TASK> [ 472.075308] dump_stack_lvl+0x137/0x1a0 [ 472.075308] print_report+0x101/0x250 [ 472.075308] ? __virt_addr_valid+0x77/0x160 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_report+0x139/0x170 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_check_range+0x2c3/0x2e0 [ 472.075308] mutex_lock+0x68/0xc0 [ 472.075308] l2cap_chan_timeout+0x181/0x300 [ 472.075308] process_one_work+0x5d2/0xe00 [ 472.075308] worker_thread+0xe1d/0x1660 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] kthread+0x2b7/0x350 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork+0x4d/0x80 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork_asm+0x11/0x20 [ 472.075308] </TASK> [ 472.075308] ================================================================== [ 472.094860] Disabling lock debugging due to kernel taint [ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158 [ 472.096136] #PF: supervisor write access in kernel mode [ 472.096136] #PF: error_code(0x0002) - not-present page [ 472.096136] PGD 0 P4D 0 [ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI [ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.096136] Workqueue: events l2cap_chan_timeout [ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0 [ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88 [ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246 [ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865 [ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78 [ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f [ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000 [ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00 [ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000 [ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0 [ 472.096136] Call Trace: [ 472.096136] <TASK> [ 472.096136] ? __die_body+0x8d/0xe0 [ 472.096136] ? page_fault_oops+0x6b8/0x9a0 [ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0 [ 472.096136] ? do_user_addr_fault+0x1027/0x1340 [ 472.096136] ? _printk+0x7a/0xa0 [ 472.096136] ? mutex_lock+0x68/0xc0 [ 472.096136] ? add_taint+0x42/0xd0 [ 472.096136] ? exc_page_fault+0x6a/0x1b0 [ 472.096136] ? asm_exc_page_fault+0x26/0x30 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] ? mutex_lock+0x88/0xc0 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] l2cap_chan_timeo ---truncated---
CVE-2024-27398 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix use-after-free bugs caused by sco_sock_timeout When the sco connection is established and then, the sco socket is releasing, timeout_work will be scheduled to judge whether the sco disconnection is timeout. The sock will be deallocated later, but it is dereferenced again in sco_sock_timeout. As a result, the use-after-free bugs will happen. The root cause is shown below: Cleanup Thread | Worker Thread sco_sock_release | sco_sock_close | __sco_sock_close | sco_sock_set_timer | schedule_delayed_work | sco_sock_kill | (wait a time) sock_put(sk) //FREE | sco_sock_timeout | sock_hold(sk) //USE The KASAN report triggered by POC is shown below: [ 95.890016] ================================================================== [ 95.890496] BUG: KASAN: slab-use-after-free in sco_sock_timeout+0x5e/0x1c0 [ 95.890755] Write of size 4 at addr ffff88800c388080 by task kworker/0:0/7 ... [ 95.890755] Workqueue: events sco_sock_timeout [ 95.890755] Call Trace: [ 95.890755] <TASK> [ 95.890755] dump_stack_lvl+0x45/0x110 [ 95.890755] print_address_description+0x78/0x390 [ 95.890755] print_report+0x11b/0x250 [ 95.890755] ? __virt_addr_valid+0xbe/0xf0 [ 95.890755] ? sco_sock_timeout+0x5e/0x1c0 [ 95.890755] kasan_report+0x139/0x170 [ 95.890755] ? update_load_avg+0xe5/0x9f0 [ 95.890755] ? sco_sock_timeout+0x5e/0x1c0 [ 95.890755] kasan_check_range+0x2c3/0x2e0 [ 95.890755] sco_sock_timeout+0x5e/0x1c0 [ 95.890755] process_one_work+0x561/0xc50 [ 95.890755] worker_thread+0xab2/0x13c0 [ 95.890755] ? pr_cont_work+0x490/0x490 [ 95.890755] kthread+0x279/0x300 [ 95.890755] ? pr_cont_work+0x490/0x490 [ 95.890755] ? kthread_blkcg+0xa0/0xa0 [ 95.890755] ret_from_fork+0x34/0x60 [ 95.890755] ? kthread_blkcg+0xa0/0xa0 [ 95.890755] ret_from_fork_asm+0x11/0x20 [ 95.890755] </TASK> [ 95.890755] [ 95.890755] Allocated by task 506: [ 95.890755] kasan_save_track+0x3f/0x70 [ 95.890755] __kasan_kmalloc+0x86/0x90 [ 95.890755] __kmalloc+0x17f/0x360 [ 95.890755] sk_prot_alloc+0xe1/0x1a0 [ 95.890755] sk_alloc+0x31/0x4e0 [ 95.890755] bt_sock_alloc+0x2b/0x2a0 [ 95.890755] sco_sock_create+0xad/0x320 [ 95.890755] bt_sock_create+0x145/0x320 [ 95.890755] __sock_create+0x2e1/0x650 [ 95.890755] __sys_socket+0xd0/0x280 [ 95.890755] __x64_sys_socket+0x75/0x80 [ 95.890755] do_syscall_64+0xc4/0x1b0 [ 95.890755] entry_SYSCALL_64_after_hwframe+0x67/0x6f [ 95.890755] [ 95.890755] Freed by task 506: [ 95.890755] kasan_save_track+0x3f/0x70 [ 95.890755] kasan_save_free_info+0x40/0x50 [ 95.890755] poison_slab_object+0x118/0x180 [ 95.890755] __kasan_slab_free+0x12/0x30 [ 95.890755] kfree+0xb2/0x240 [ 95.890755] __sk_destruct+0x317/0x410 [ 95.890755] sco_sock_release+0x232/0x280 [ 95.890755] sock_close+0xb2/0x210 [ 95.890755] __fput+0x37f/0x770 [ 95.890755] task_work_run+0x1ae/0x210 [ 95.890755] get_signal+0xe17/0xf70 [ 95.890755] arch_do_signal_or_restart+0x3f/0x520 [ 95.890755] syscall_exit_to_user_mode+0x55/0x120 [ 95.890755] do_syscall_64+0xd1/0x1b0 [ 95.890755] entry_SYSCALL_64_after_hwframe+0x67/0x6f [ 95.890755] [ 95.890755] The buggy address belongs to the object at ffff88800c388000 [ 95.890755] which belongs to the cache kmalloc-1k of size 1024 [ 95.890755] The buggy address is located 128 bytes inside of [ 95.890755] freed 1024-byte region [ffff88800c388000, ffff88800c388400) [ 95.890755] [ 95.890755] The buggy address belongs to the physical page: [ 95.890755] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88800c38a800 pfn:0xc388 [ 95.890755] head: order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 [ 95.890755] ano ---truncated---
CVE-2024-27397 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: use timestamp to check for set element timeout Add a timestamp field at the beginning of the transaction, store it in the nftables per-netns area. Update set backend .insert, .deactivate and sync gc path to use the timestamp, this avoids that an element expires while control plane transaction is still unfinished. .lookup and .update, which are used from packet path, still use the current time to check if the element has expired. And .get path and dump also since this runs lockless under rcu read size lock. Then, there is async gc which also needs to check the current time since it runs asynchronously from a workqueue.
CVE-2024-27396 In the Linux kernel, the following vulnerability has been resolved: net: gtp: Fix Use-After-Free in gtp_dellink Since call_rcu, which is called in the hlist_for_each_entry_rcu traversal of gtp_dellink, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
CVE-2024-27395 In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: Fix Use-After-Free in ovs_ct_exit Since kfree_rcu, which is called in the hlist_for_each_entry_rcu traversal of ovs_ct_limit_exit, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
CVE-2024-27394 In the Linux kernel, the following vulnerability has been resolved: tcp: Fix Use-After-Free in tcp_ao_connect_init Since call_rcu, which is called in the hlist_for_each_entry_rcu traversal of tcp_ao_connect_init, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
CVE-2024-27393 In the Linux kernel, the following vulnerability has been resolved: xen-netfront: Add missing skb_mark_for_recycle Notice that skb_mark_for_recycle() is introduced later than fixes tag in commit 6a5bcd84e886 ("page_pool: Allow drivers to hint on SKB recycling"). It is believed that fixes tag were missing a call to page_pool_release_page() between v5.9 to v5.14, after which is should have used skb_mark_for_recycle(). Since v6.6 the call page_pool_release_page() were removed (in commit 535b9c61bdef ("net: page_pool: hide page_pool_release_page()") and remaining callers converted (in commit 6bfef2ec0172 ("Merge branch 'net-page_pool-remove-page_pool_release_page'")). This leak became visible in v6.8 via commit dba1b8a7ab68 ("mm/page_pool: catch page_pool memory leaks").
CVE-2024-27392 In the Linux kernel, the following vulnerability has been resolved: nvme: host: fix double-free of struct nvme_id_ns in ns_update_nuse() When nvme_identify_ns() fails, it frees the pointer to the struct nvme_id_ns before it returns. However, ns_update_nuse() calls kfree() for the pointer even when nvme_identify_ns() fails. This results in KASAN double-free, which was observed with blktests nvme/045 with proposed patches [1] on the kernel v6.8-rc7. Fix the double-free by skipping kfree() when nvme_identify_ns() fails.
CVE-2024-27391 In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: do not realloc workqueue everytime an interface is added Commit 09ed8bfc5215 ("wilc1000: Rename workqueue from "WILC_wq" to "NETDEV-wq"") moved workqueue creation in wilc_netdev_ifc_init in order to set the interface name in the workqueue name. However, while the driver needs only one workqueue, the wilc_netdev_ifc_init is called each time we add an interface over a phy, which in turns overwrite the workqueue with a new one. This can be observed with the following commands: for i in $(seq 0 10) do iw phy phy0 interface add wlan1 type managed iw dev wlan1 del done ps -eo pid,comm|grep wlan 39 kworker/R-wlan0 98 kworker/R-wlan1 102 kworker/R-wlan1 105 kworker/R-wlan1 108 kworker/R-wlan1 111 kworker/R-wlan1 114 kworker/R-wlan1 117 kworker/R-wlan1 120 kworker/R-wlan1 123 kworker/R-wlan1 126 kworker/R-wlan1 129 kworker/R-wlan1 Fix this leakage by putting back hif_workqueue allocation in wilc_cfg80211_init. Regarding the workqueue name, it is indeed relevant to set it lowercase, however it is not attached to a specific netdev, so enforcing netdev name in the name is not so relevant. Still, enrich the name with the wiphy name to make it clear which phy is using the workqueue.
CVE-2024-27390 In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: remove one synchronize_net() barrier in ipv6_mc_down() As discussed in the past (commit 2d3916f31891 ("ipv6: fix skb drops in igmp6_event_query() and igmp6_event_report()")) I think the synchronize_net() call in ipv6_mc_down() is not needed. Under load, synchronize_net() can last between 200 usec and 5 ms. KASAN seems to agree as well.
CVE-2024-27389 In the Linux kernel, the following vulnerability has been resolved: pstore: inode: Only d_invalidate() is needed Unloading a modular pstore backend with records in pstorefs would trigger the dput() double-drop warning: WARNING: CPU: 0 PID: 2569 at fs/dcache.c:762 dput.part.0+0x3f3/0x410 Using the combo of d_drop()/dput() (as mentioned in Documentation/filesystems/vfs.rst) isn't the right approach here, and leads to the reference counting problem seen above. Use d_invalidate() and update the code to not bother checking for error codes that can never happen. ---
CVE-2024-27388 In the Linux kernel, the following vulnerability has been resolved: SUNRPC: fix some memleaks in gssx_dec_option_array The creds and oa->data need to be freed in the error-handling paths after their allocation. So this patch add these deallocations in the corresponding paths.
CVE-2024-27099 The uAMQP is a C library for AMQP 1.0 communication to Azure Cloud Services. When processing an incorrect `AMQP_VALUE` failed state, may cause a double free problem. This may cause a RCE. Update submodule with commit 2ca42b6e4e098af2d17e487814a91d05f6ae4987.
CVE-2024-27080 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race when detecting delalloc ranges during fiemap For fiemap we recently stopped locking the target extent range for the whole duration of the fiemap call, in order to avoid a deadlock in a scenario where the fiemap buffer happens to be a memory mapped range of the same file. This use case is very unlikely to be useful in practice but it may be triggered by fuzz testing (syzbot, etc). This however introduced a race that makes us miss delalloc ranges for file regions that are currently holes, so the caller of fiemap will not be aware that there's data for some file regions. This can be quite serious for some use cases - for example in coreutils versions before 9.0, the cp program used fiemap to detect holes and data in the source file, copying only regions with data (extents or delalloc) from the source file to the destination file in order to preserve holes (see the documentation for its --sparse command line option). This means that if cp was used with a source file that had delalloc in a hole, the destination file could end up without that data, which is effectively a data loss issue, if it happened to hit the race described below. The race happens like this: 1) Fiemap is called, without the FIEMAP_FLAG_SYNC flag, for a file that has delalloc in the file range [64M, 65M[, which is currently a hole; 2) Fiemap locks the inode in shared mode, then starts iterating the inode's subvolume tree searching for file extent items, without having the whole fiemap target range locked in the inode's io tree - the change introduced recently by commit b0ad381fa769 ("btrfs: fix deadlock with fiemap and extent locking"). It only locks ranges in the io tree when it finds a hole or prealloc extent since that commit; 3) Note that fiemap clones each leaf before using it, and this is to avoid deadlocks when locking a file range in the inode's io tree and the fiemap buffer is memory mapped to some file, because writing to the page with btrfs_page_mkwrite() will wait on any ordered extent for the page's range and the ordered extent needs to lock the range and may need to modify the same leaf, therefore leading to a deadlock on the leaf; 4) While iterating the file extent items in the cloned leaf before finding the hole in the range [64M, 65M[, the delalloc in that range is flushed and its ordered extent completes - meaning the corresponding file extent item is in the inode's subvolume tree, but not present in the cloned leaf that fiemap is iterating over; 5) When fiemap finds the hole in the [64M, 65M[ range by seeing the gap in the cloned leaf (or a file extent item with disk_bytenr == 0 in case the NO_HOLES feature is not enabled), it will lock that file range in the inode's io tree and then search for delalloc by checking for the EXTENT_DELALLOC bit in the io tree for that range and ordered extents (with btrfs_find_delalloc_in_range()). But it finds nothing since the delalloc in that range was already flushed and the ordered extent completed and is gone - as a result fiemap will not report that there's delalloc or an extent for the range [64M, 65M[, so user space will be mislead into thinking that there's a hole in that range. This could actually be sporadically triggered with test case generic/094 from fstests, which reports a missing extent/delalloc range like this: generic/094 2s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad) --- tests/generic/094.out 2020-06-10 19:29:03.830519425 +0100 +++ /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad 2024-02-28 11:00:00.381071525 +0000 @@ -1,3 +1,9 @@ QA output created by 094 fiemap run with sync fiemap run without sync +ERROR: couldn't find extent at 7 +map is 'HHDDHPPDPHPH' +logical: [ 5.. 6] phys: ---truncated---
CVE-2024-27079 In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix NULL domain on device release In the kdump kernel, the IOMMU operates in deferred_attach mode. In this mode, info->domain may not yet be assigned by the time the release_device function is called. It leads to the following crash in the crash kernel: BUG: kernel NULL pointer dereference, address: 000000000000003c ... RIP: 0010:do_raw_spin_lock+0xa/0xa0 ... _raw_spin_lock_irqsave+0x1b/0x30 intel_iommu_release_device+0x96/0x170 iommu_deinit_device+0x39/0xf0 __iommu_group_remove_device+0xa0/0xd0 iommu_bus_notifier+0x55/0xb0 notifier_call_chain+0x5a/0xd0 blocking_notifier_call_chain+0x41/0x60 bus_notify+0x34/0x50 device_del+0x269/0x3d0 pci_remove_bus_device+0x77/0x100 p2sb_bar+0xae/0x1d0 ... i801_probe+0x423/0x740 Use the release_domain mechanism to fix it. The scalable mode context entry which is not part of release domain should be cleared in release_device().
CVE-2024-27078 In the Linux kernel, the following vulnerability has been resolved: media: v4l2-tpg: fix some memleaks in tpg_alloc In tpg_alloc, resources should be deallocated in each and every error-handling paths, since they are allocated in for statements. Otherwise there would be memleaks because tpg_free is called only when tpg_alloc return 0.
CVE-2024-27077 In the Linux kernel, the following vulnerability has been resolved: media: v4l2-mem2mem: fix a memleak in v4l2_m2m_register_entity The entity->name (i.e. name) is allocated in v4l2_m2m_register_entity but isn't freed in its following error-handling paths. This patch adds such deallocation to prevent memleak of entity->name.
CVE-2024-27076 In the Linux kernel, the following vulnerability has been resolved: media: imx: csc/scaler: fix v4l2_ctrl_handler memory leak Free the memory allocated in v4l2_ctrl_handler_init on release.
CVE-2024-27075 In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: avoid stack overflow warnings with clang A previous patch worked around a KASAN issue in stv0367, now a similar problem showed up with clang: drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in 'stv0367ter_set_frontend' [-Werror,-Wframe-larger-than] 1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe) Rework the stv0367_writereg() function to be simpler and mark both register access functions as noinline_for_stack so the temporary i2c_msg structures do not get duplicated on the stack when KASAN_STACK is enabled.
CVE-2024-27074 In the Linux kernel, the following vulnerability has been resolved: media: go7007: fix a memleak in go7007_load_encoder In go7007_load_encoder, bounce(i.e. go->boot_fw), is allocated without a deallocation thereafter. After the following call chain: saa7134_go7007_init |-> go7007_boot_encoder |-> go7007_load_encoder |-> kfree(go) go is freed and thus bounce is leaked.
CVE-2024-27073 In the Linux kernel, the following vulnerability has been resolved: media: ttpci: fix two memleaks in budget_av_attach When saa7146_register_device and saa7146_vv_init fails, budget_av_attach should free the resources it allocates, like the error-handling of ttpci_budget_init does. Besides, there are two fixme comment refers to such deallocations.
CVE-2024-27072 In the Linux kernel, the following vulnerability has been resolved: media: usbtv: Remove useless locks in usbtv_video_free() Remove locks calls in usbtv_video_free() because are useless and may led to a deadlock as reported here: https://syzkaller.appspot.com/x/bisect.txt?x=166dc872180000 Also remove usbtv_stop() call since it will be called when unregistering the device. Before 'c838530d230b' this issue would only be noticed if you disconnect while streaming and now it is noticeable even when disconnecting while not streaming. [hverkuil: fix minor spelling mistake in log message]
CVE-2024-27071 In the Linux kernel, the following vulnerability has been resolved: backlight: hx8357: Fix potential NULL pointer dereference The "im" pins are optional. Add missing check in the hx8357_probe().
CVE-2024-27070 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid use-after-free issue in f2fs_filemap_fault syzbot reports a f2fs bug as below: BUG: KASAN: slab-use-after-free in f2fs_filemap_fault+0xd1/0x2c0 fs/f2fs/file.c:49 Read of size 8 at addr ffff88807bb22680 by task syz-executor184/5058 CPU: 0 PID: 5058 Comm: syz-executor184 Not tainted 6.7.0-syzkaller-09928-g052d534373b7 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:377 [inline] print_report+0x163/0x540 mm/kasan/report.c:488 kasan_report+0x142/0x170 mm/kasan/report.c:601 f2fs_filemap_fault+0xd1/0x2c0 fs/f2fs/file.c:49 __do_fault+0x131/0x450 mm/memory.c:4376 do_shared_fault mm/memory.c:4798 [inline] do_fault mm/memory.c:4872 [inline] do_pte_missing mm/memory.c:3745 [inline] handle_pte_fault mm/memory.c:5144 [inline] __handle_mm_fault+0x23b7/0x72b0 mm/memory.c:5285 handle_mm_fault+0x27e/0x770 mm/memory.c:5450 do_user_addr_fault arch/x86/mm/fault.c:1364 [inline] handle_page_fault arch/x86/mm/fault.c:1507 [inline] exc_page_fault+0x456/0x870 arch/x86/mm/fault.c:1563 asm_exc_page_fault+0x26/0x30 arch/x86/include/asm/idtentry.h:570 The root cause is: in f2fs_filemap_fault(), vmf->vma may be not alive after filemap_fault(), so it may cause use-after-free issue when accessing vmf->vma->vm_flags in trace_f2fs_filemap_fault(). So it needs to keep vm_flags in separated temporary variable for tracepoint use.
CVE-2024-27069 In the Linux kernel, the following vulnerability has been resolved: ovl: relax WARN_ON in ovl_verify_area() syzbot hit an assertion in copy up data loop which looks like it is the result of a lower file whose size is being changed underneath overlayfs. This type of use case is documented to cause undefined behavior, so returning EIO error for the copy up makes sense, but it should not be causing a WARN_ON assertion.
CVE-2024-27068 In the Linux kernel, the following vulnerability has been resolved: thermal/drivers/mediatek/lvts_thermal: Fix a memory leak in an error handling path If devm_krealloc() fails, then 'efuse' is leaking. So free it to avoid a leak.
CVE-2024-27067 In the Linux kernel, the following vulnerability has been resolved: xen/evtchn: avoid WARN() when unbinding an event channel When unbinding a user event channel, the related handler might be called a last time in case the kernel was built with CONFIG_DEBUG_SHIRQ. This might cause a WARN() in the handler. Avoid that by adding an "unbinding" flag to struct user_event which will short circuit the handler.
CVE-2024-27066 In the Linux kernel, the following vulnerability has been resolved: virtio: packed: fix unmap leak for indirect desc table When use_dma_api and premapped are true, then the do_unmap is false. Because the do_unmap is false, vring_unmap_extra_packed is not called by detach_buf_packed. if (unlikely(vq->do_unmap)) { curr = id; for (i = 0; i < state->num; i++) { vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]); curr = vq->packed.desc_extra[curr].next; } } So the indirect desc table is not unmapped. This causes the unmap leak. So here, we check vq->use_dma_api instead. Synchronously, dma info is updated based on use_dma_api judgment This bug does not occur, because no driver use the premapped with indirect.
CVE-2024-27065 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: do not compare internal table flags on updates Restore skipping transaction if table update does not modify flags.
CVE-2024-27064 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix a memory leak in nf_tables_updchain If nft_netdev_register_hooks() fails, the memory associated with nft_stats is not freed, causing a memory leak. This patch fixes it by moving nft_stats_alloc() down after nft_netdev_register_hooks() succeeds.
CVE-2024-27063 In the Linux kernel, the following vulnerability has been resolved: leds: trigger: netdev: Fix kernel panic on interface rename trig notify Commit d5e01266e7f5 ("leds: trigger: netdev: add additional specific link speed mode") in the various changes, reworked the way to set the LINKUP mode in commit cee4bd16c319 ("leds: trigger: netdev: Recheck NETDEV_LED_MODE_LINKUP on dev rename") and moved it to a generic function. This changed the logic where, in the previous implementation the dev from the trigger event was used to check if the carrier was ok, but in the new implementation with the generic function, the dev in trigger_data is used instead. This is problematic and cause a possible kernel panic due to the fact that the dev in the trigger_data still reference the old one as the new one (passed from the trigger event) still has to be hold and saved in the trigger_data struct (done in the NETDEV_REGISTER case). On calling of get_device_state(), an invalid net_dev is used and this cause a kernel panic. To handle this correctly, move the call to get_device_state() after the new net_dev is correctly set in trigger_data (in the NETDEV_REGISTER case) and correctly parse the new dev.
CVE-2024-27062 In the Linux kernel, the following vulnerability has been resolved: nouveau: lock the client object tree. It appears the client object tree has no locking unless I've missed something else. Fix races around adding/removing client objects, mostly vram bar mappings. 4562.099306] general protection fault, probably for non-canonical address 0x6677ed422bceb80c: 0000 [#1] PREEMPT SMP PTI [ 4562.099314] CPU: 2 PID: 23171 Comm: deqp-vk Not tainted 6.8.0-rc6+ #27 [ 4562.099324] Hardware name: Gigabyte Technology Co., Ltd. Z390 I AORUS PRO WIFI/Z390 I AORUS PRO WIFI-CF, BIOS F8 11/05/2021 [ 4562.099330] RIP: 0010:nvkm_object_search+0x1d/0x70 [nouveau] [ 4562.099503] Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 48 89 f8 48 85 f6 74 39 48 8b 87 a0 00 00 00 48 85 c0 74 12 <48> 8b 48 f8 48 39 ce 73 15 48 8b 40 10 48 85 c0 75 ee 48 c7 c0 fe [ 4562.099506] RSP: 0000:ffffa94cc420bbf8 EFLAGS: 00010206 [ 4562.099512] RAX: 6677ed422bceb814 RBX: ffff98108791f400 RCX: ffff9810f26b8f58 [ 4562.099517] RDX: 0000000000000000 RSI: ffff9810f26b9158 RDI: ffff98108791f400 [ 4562.099519] RBP: ffff9810f26b9158 R08: 0000000000000000 R09: 0000000000000000 [ 4562.099521] R10: ffffa94cc420bc48 R11: 0000000000000001 R12: ffff9810f02a7cc0 [ 4562.099526] R13: 0000000000000000 R14: 00000000000000ff R15: 0000000000000007 [ 4562.099528] FS: 00007f629c5017c0(0000) GS:ffff98142c700000(0000) knlGS:0000000000000000 [ 4562.099534] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4562.099536] CR2: 00007f629a882000 CR3: 000000017019e004 CR4: 00000000003706f0 [ 4562.099541] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4562.099542] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 4562.099544] Call Trace: [ 4562.099555] <TASK> [ 4562.099573] ? die_addr+0x36/0x90 [ 4562.099583] ? exc_general_protection+0x246/0x4a0 [ 4562.099593] ? asm_exc_general_protection+0x26/0x30 [ 4562.099600] ? nvkm_object_search+0x1d/0x70 [nouveau] [ 4562.099730] nvkm_ioctl+0xa1/0x250 [nouveau] [ 4562.099861] nvif_object_map_handle+0xc8/0x180 [nouveau] [ 4562.099986] nouveau_ttm_io_mem_reserve+0x122/0x270 [nouveau] [ 4562.100156] ? dma_resv_test_signaled+0x26/0xb0 [ 4562.100163] ttm_bo_vm_fault_reserved+0x97/0x3c0 [ttm] [ 4562.100182] ? __mutex_unlock_slowpath+0x2a/0x270 [ 4562.100189] nouveau_ttm_fault+0x69/0xb0 [nouveau] [ 4562.100356] __do_fault+0x32/0x150 [ 4562.100362] do_fault+0x7c/0x560 [ 4562.100369] __handle_mm_fault+0x800/0xc10 [ 4562.100382] handle_mm_fault+0x17c/0x3e0 [ 4562.100388] do_user_addr_fault+0x208/0x860 [ 4562.100395] exc_page_fault+0x7f/0x200 [ 4562.100402] asm_exc_page_fault+0x26/0x30 [ 4562.100412] RIP: 0033:0x9b9870 [ 4562.100419] Code: 85 a8 f7 ff ff 8b 8d 80 f7 ff ff 89 08 e9 18 f2 ff ff 0f 1f 84 00 00 00 00 00 44 89 32 e9 90 fa ff ff 0f 1f 84 00 00 00 00 00 <44> 89 32 e9 f8 f1 ff ff 0f 1f 84 00 00 00 00 00 66 44 89 32 e9 e7 [ 4562.100422] RSP: 002b:00007fff9ba2dc70 EFLAGS: 00010246 [ 4562.100426] RAX: 0000000000000004 RBX: 000000000dd65e10 RCX: 000000fff0000000 [ 4562.100428] RDX: 00007f629a882000 RSI: 00007f629a882000 RDI: 0000000000000066 [ 4562.100432] RBP: 00007fff9ba2e570 R08: 0000000000000000 R09: 0000000123ddf000 [ 4562.100434] R10: 0000000000000001 R11: 0000000000000246 R12: 000000007fffffff [ 4562.100436] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 4562.100446] </TASK> [ 4562.100448] Modules linked in: nf_conntrack_netbios_ns nf_conntrack_broadcast nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink cmac bnep sunrpc iwlmvm intel_rapl_msr intel_rapl_common snd_sof_pci_intel_cnl x86_pkg_temp_thermal intel_powerclamp snd_sof_intel_hda_common mac80211 coretemp snd_soc_acpi_intel_match kvm_intel snd_soc_acpi snd_soc_hdac_hda snd_sof_pci snd_sof_xtensa_dsp snd_sof_intel_hda_mlink ---truncated---
CVE-2024-27061 In the Linux kernel, the following vulnerability has been resolved: crypto: sun8i-ce - Fix use after free in unprepare sun8i_ce_cipher_unprepare should be called before crypto_finalize_skcipher_request, because client callbacks may immediately free memory, that isn't needed anymore. But it will be used by unprepare after free. Before removing prepare/unprepare callbacks it was handled by crypto engine in crypto_finalize_request. Usually that results in a pointer dereference problem during a in crypto selftest. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000030 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000004716d000 [0000000000000030] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP This problem is detected by KASAN as well. ================================================================== BUG: KASAN: slab-use-after-free in sun8i_ce_cipher_do_one+0x6e8/0xf80 [sun8i_ce] Read of size 8 at addr ffff00000dcdc040 by task 1c15000.crypto-/373 Hardware name: Pine64 PinePhone (1.2) (DT) Call trace: dump_backtrace+0x9c/0x128 show_stack+0x20/0x38 dump_stack_lvl+0x48/0x60 print_report+0xf8/0x5d8 kasan_report+0x90/0xd0 __asan_load8+0x9c/0xc0 sun8i_ce_cipher_do_one+0x6e8/0xf80 [sun8i_ce] crypto_pump_work+0x354/0x620 [crypto_engine] kthread_worker_fn+0x244/0x498 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Allocated by task 379: kasan_save_stack+0x3c/0x68 kasan_set_track+0x2c/0x40 kasan_save_alloc_info+0x24/0x38 __kasan_kmalloc+0xd4/0xd8 __kmalloc+0x74/0x1d0 alg_test_skcipher+0x90/0x1f0 alg_test+0x24c/0x830 cryptomgr_test+0x38/0x60 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Freed by task 379: kasan_save_stack+0x3c/0x68 kasan_set_track+0x2c/0x40 kasan_save_free_info+0x38/0x60 __kasan_slab_free+0x100/0x170 slab_free_freelist_hook+0xd4/0x1e8 __kmem_cache_free+0x15c/0x290 kfree+0x74/0x100 kfree_sensitive+0x80/0xb0 alg_test_skcipher+0x12c/0x1f0 alg_test+0x24c/0x830 cryptomgr_test+0x38/0x60 kthread+0x168/0x178 ret_from_fork+0x10/0x20 The buggy address belongs to the object at ffff00000dcdc000 which belongs to the cache kmalloc-256 of size 256 The buggy address is located 64 bytes inside of freed 256-byte region [ffff00000dcdc000, ffff00000dcdc100)
CVE-2024-27060 In the Linux kernel, the following vulnerability has been resolved: thunderbolt: Fix NULL pointer dereference in tb_port_update_credits() Olliver reported that his system crashes when plugging in Thunderbolt 1 device: BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:tb_port_do_update_credits+0x1b/0x130 [thunderbolt] Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? exc_page_fault+0x7f/0x180 ? asm_exc_page_fault+0x26/0x30 ? tb_port_do_update_credits+0x1b/0x130 ? tb_switch_update_link_attributes+0x83/0xd0 tb_switch_add+0x7a2/0xfe0 tb_scan_port+0x236/0x6f0 tb_handle_hotplug+0x6db/0x900 process_one_work+0x171/0x340 worker_thread+0x27b/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xe5/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> This is due the fact that some Thunderbolt 1 devices only have one lane adapter. Fix this by checking for the lane 1 before we read its credits.
CVE-2024-27059 In the Linux kernel, the following vulnerability has been resolved: USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values in the ATA ID information to calculate cylinder and head values when creating a CDB for READ or WRITE commands. The calculation involves division and modulus operations, which will cause a crash if either of these values is 0. While this never happens with a genuine device, it could happen with a flawed or subversive emulation, as reported by the syzbot fuzzer. Protect against this possibility by refusing to bind to the device if either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID information is 0. This requires isd200_Initialization() to return a negative error code when initialization fails; currently it always returns 0 (even when there is an error).
CVE-2024-27058 In the Linux kernel, the following vulnerability has been resolved: tmpfs: fix race on handling dquot rbtree A syzkaller reproducer found a race while attempting to remove dquot information from the rb tree. Fetching the rb_tree root node must also be protected by the dqopt->dqio_sem, otherwise, giving the right timing, shmem_release_dquot() will trigger a warning because it couldn't find a node in the tree, when the real reason was the root node changing before the search starts: Thread 1 Thread 2 - shmem_release_dquot() - shmem_{acquire,release}_dquot() - fetch ROOT - Fetch ROOT - acquire dqio_sem - wait dqio_sem - do something, triger a tree rebalance - release dqio_sem - acquire dqio_sem - start searching for the node, but from the wrong location, missing the node, and triggering a warning.
CVE-2024-27057 In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc4-pcm: Workaround for crashed firmware on system suspend When the system is suspended while audio is active, the sof_ipc4_pcm_hw_free() is invoked to reset the pipelines since during suspend the DSP is turned off, streams will be re-started after resume. If the firmware crashes during while audio is running (or when we reset the stream before suspend) then the sof_ipc4_set_multi_pipeline_state() will fail with IPC error and the state change is interrupted. This will cause misalignment between the kernel and firmware state on next DSP boot resulting errors returned by firmware for IPC messages, eventually failing the audio resume. On stream close the errors are ignored so the kernel state will be corrected on the next DSP boot, so the second boot after the DSP panic. If sof_ipc4_trigger_pipelines() is called from sof_ipc4_pcm_hw_free() then state parameter is SOF_IPC4_PIPE_RESET and only in this case. Treat a forced pipeline reset similarly to how we treat a pcm_free by ignoring error on state sending to allow the kernel's state to be consistent with the state the firmware will have after the next boot.
CVE-2024-27056 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: ensure offloading TID queue exists The resume code path assumes that the TX queue for the offloading TID has been configured. At resume time it then tries to sync the write pointer as it may have been updated by the firmware. In the unusual event that no packets have been send on TID 0, the queue will not have been allocated and this causes a crash. Fix this by ensuring the queue exist at suspend time.
CVE-2024-27055 In the Linux kernel, the following vulnerability has been resolved: workqueue: Don't call cpumask_test_cpu() with -1 CPU in wq_update_node_max_active() For wq_update_node_max_active(), @off_cpu of -1 indicates that no CPU is going down. The function was incorrectly calling cpumask_test_cpu() with -1 CPU leading to oopses like the following on some archs: Unable to handle kernel paging request at virtual address ffff0002100296e0 .. pc : wq_update_node_max_active+0x50/0x1fc lr : wq_update_node_max_active+0x1f0/0x1fc ... Call trace: wq_update_node_max_active+0x50/0x1fc apply_wqattrs_commit+0xf0/0x114 apply_workqueue_attrs_locked+0x58/0xa0 alloc_workqueue+0x5ac/0x774 workqueue_init_early+0x460/0x540 start_kernel+0x258/0x684 __primary_switched+0xb8/0xc0 Code: 9100a273 35000d01 53067f00 d0016dc1 (f8607a60) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Attempted to kill the idle task! ---[ end Kernel panic - not syncing: Attempted to kill the idle task! ]--- Fix it.
CVE-2024-27054 In the Linux kernel, the following vulnerability has been resolved: s390/dasd: fix double module refcount decrement Once the discipline is associated with the device, deleting the device takes care of decrementing the module's refcount. Doing it manually on this error path causes refcount to artificially decrease on each error while it should just stay the same.
CVE-2024-27053 In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: fix RCU usage in connect path With lockdep enabled, calls to the connect function from cfg802.11 layer lead to the following warning: ============================= WARNING: suspicious RCU usage 6.7.0-rc1-wt+ #333 Not tainted ----------------------------- drivers/net/wireless/microchip/wilc1000/hif.c:386 suspicious rcu_dereference_check() usage! [...] stack backtrace: CPU: 0 PID: 100 Comm: wpa_supplicant Not tainted 6.7.0-rc1-wt+ #333 Hardware name: Atmel SAMA5 unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x34/0x48 dump_stack_lvl from wilc_parse_join_bss_param+0x7dc/0x7f4 wilc_parse_join_bss_param from connect+0x2c4/0x648 connect from cfg80211_connect+0x30c/0xb74 cfg80211_connect from nl80211_connect+0x860/0xa94 nl80211_connect from genl_rcv_msg+0x3fc/0x59c genl_rcv_msg from netlink_rcv_skb+0xd0/0x1f8 netlink_rcv_skb from genl_rcv+0x2c/0x3c genl_rcv from netlink_unicast+0x3b0/0x550 netlink_unicast from netlink_sendmsg+0x368/0x688 netlink_sendmsg from ____sys_sendmsg+0x190/0x430 ____sys_sendmsg from ___sys_sendmsg+0x110/0x158 ___sys_sendmsg from sys_sendmsg+0xe8/0x150 sys_sendmsg from ret_fast_syscall+0x0/0x1c This warning is emitted because in the connect path, when trying to parse target BSS parameters, we dereference a RCU pointer whithout being in RCU critical section. Fix RCU dereference usage by moving it to a RCU read critical section. To avoid wrapping the whole wilc_parse_join_bss_param under the critical section, just use the critical section to copy ies data
CVE-2024-27052 In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: add cancel_work_sync() for c2hcmd_work The workqueue might still be running, when the driver is stopped. To avoid a use-after-free, call cancel_work_sync() in rtl8xxxu_stop().
CVE-2024-27051 In the Linux kernel, the following vulnerability has been resolved: cpufreq: brcmstb-avs-cpufreq: add check for cpufreq_cpu_get's return value cpufreq_cpu_get may return NULL. To avoid NULL-dereference check it and return 0 in case of error. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-27050 In the Linux kernel, the following vulnerability has been resolved: libbpf: Use OPTS_SET() macro in bpf_xdp_query() When the feature_flags and xdp_zc_max_segs fields were added to the libbpf bpf_xdp_query_opts, the code writing them did not use the OPTS_SET() macro. This causes libbpf to write to those fields unconditionally, which means that programs compiled against an older version of libbpf (with a smaller size of the bpf_xdp_query_opts struct) will have its stack corrupted by libbpf writing out of bounds. The patch adding the feature_flags field has an early bail out if the feature_flags field is not part of the opts struct (via the OPTS_HAS) macro, but the patch adding xdp_zc_max_segs does not. For consistency, this fix just changes the assignments to both fields to use the OPTS_SET() macro.
CVE-2024-27049 In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7925e: fix use-after-free in free_irq() From commit a304e1b82808 ("[PATCH] Debug shared irqs"), there is a test to make sure the shared irq handler should be able to handle the unexpected event after deregistration. For this case, let's apply MT76_REMOVED flag to indicate the device was removed and do not run into the resource access anymore.
CVE-2024-27048 In the Linux kernel, the following vulnerability has been resolved: wifi: brcm80211: handle pmk_op allocation failure The kzalloc() in brcmf_pmksa_v3_op() will return null if the physical memory has run out. As a result, if we dereference the null value, the null pointer dereference bug will happen. Return -ENOMEM from brcmf_pmksa_v3_op() if kzalloc() fails for pmk_op.
CVE-2024-27047 In the Linux kernel, the following vulnerability has been resolved: net: phy: fix phy_get_internal_delay accessing an empty array The phy_get_internal_delay function could try to access to an empty array in the case that the driver is calling phy_get_internal_delay without defining delay_values and rx-internal-delay-ps or tx-internal-delay-ps is defined to 0 in the device-tree. This will lead to "unable to handle kernel NULL pointer dereference at virtual address 0". To avoid this kernel oops, the test should be delay >= 0. As there is already delay < 0 test just before, the test could only be size == 0.
CVE-2024-27046 In the Linux kernel, the following vulnerability has been resolved: nfp: flower: handle acti_netdevs allocation failure The kmalloc_array() in nfp_fl_lag_do_work() will return null, if the physical memory has run out. As a result, if we dereference the acti_netdevs, the null pointer dereference bugs will happen. This patch adds a check to judge whether allocation failure occurs. If it happens, the delayed work will be rescheduled and try again.
CVE-2024-27045 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix a potential buffer overflow in 'dp_dsc_clock_en_read()' Tell snprintf() to store at most 10 bytes in the output buffer instead of 30. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm_debugfs.c:1508 dp_dsc_clock_en_read() error: snprintf() is printing too much 30 vs 10
CVE-2024-27044 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix potential NULL pointer dereferences in 'dcn10_set_output_transfer_func()' The 'stream' pointer is used in dcn10_set_output_transfer_func() before the check if 'stream' is NULL. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn10/dcn10_hwseq.c:1892 dcn10_set_output_transfer_func() warn: variable dereferenced before check 'stream' (see line 1875)
CVE-2024-27043 In the Linux kernel, the following vulnerability has been resolved: media: edia: dvbdev: fix a use-after-free In dvb_register_device, *pdvbdev is set equal to dvbdev, which is freed in several error-handling paths. However, *pdvbdev is not set to NULL after dvbdev's deallocation, causing use-after-frees in many places, for example, in the following call chain: budget_register |-> dvb_dmxdev_init |-> dvb_register_device |-> dvb_dmxdev_release |-> dvb_unregister_device |-> dvb_remove_device |-> dvb_device_put |-> kref_put When calling dvb_unregister_device, dmxdev->dvbdev (i.e. *pdvbdev in dvb_register_device) could point to memory that had been freed in dvb_register_device. Thereafter, this pointer is transferred to kref_put and triggering a use-after-free.
CVE-2024-27042 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix potential out-of-bounds access in 'amdgpu_discovery_reg_base_init()' The issue arises when the array 'adev->vcn.vcn_config' is accessed before checking if the index 'adev->vcn.num_vcn_inst' is within the bounds of the array. The fix involves moving the bounds check before the array access. This ensures that 'adev->vcn.num_vcn_inst' is within the bounds of the array before it is used as an index. Fixes the below: drivers/gpu/drm/amd/amdgpu/amdgpu_discovery.c:1289 amdgpu_discovery_reg_base_init() error: testing array offset 'adev->vcn.num_vcn_inst' after use.
CVE-2024-27041 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix NULL checks for adev->dm.dc in amdgpu_dm_fini() Since 'adev->dm.dc' in amdgpu_dm_fini() might turn out to be NULL before the call to dc_enable_dmub_notifications(), check beforehand to ensure there will not be a possible NULL-ptr-deref there. Also, since commit 1e88eb1b2c25 ("drm/amd/display: Drop CONFIG_DRM_AMD_DC_HDCP") there are two separate checks for NULL in 'adev->dm.dc' before dc_deinit_callbacks() and dc_dmub_srv_destroy(). Clean up by combining them all under one 'if'. Found by Linux Verification Center (linuxtesting.org) with static analysis tool SVACE.
CVE-2024-27040 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add 'replay' NULL check in 'edp_set_replay_allow_active()' In the first if statement, we're checking if 'replay' is NULL. But in the second if statement, we're not checking if 'replay' is NULL again before calling replay->funcs->replay_set_power_opt(). if (replay == NULL && force_static) return false; ... if (link->replay_settings.replay_feature_enabled && replay->funcs->replay_set_power_opt) { replay->funcs->replay_set_power_opt(replay, *power_opts, panel_inst); link->replay_settings.replay_power_opt_active = *power_opts; } If 'replay' is NULL, this will cause a null pointer dereference. Fixes the below found by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/link/protocols/link_edp_panel_control.c:895 edp_set_replay_allow_active() error: we previously assumed 'replay' could be null (see line 887)
CVE-2024-27039 In the Linux kernel, the following vulnerability has been resolved: clk: hisilicon: hi3559a: Fix an erroneous devm_kfree() 'p_clk' is an array allocated just before the for loop for all clk that need to be registered. It is incremented at each loop iteration. If a clk_register() call fails, 'p_clk' may point to something different from what should be freed. The best we can do, is to avoid this wrong release of memory.
CVE-2024-27038 In the Linux kernel, the following vulnerability has been resolved: clk: Fix clk_core_get NULL dereference It is possible for clk_core_get to dereference a NULL in the following sequence: clk_core_get() of_clk_get_hw_from_clkspec() __of_clk_get_hw_from_provider() __clk_get_hw() __clk_get_hw() can return NULL which is dereferenced by clk_core_get() at hw->core. Prior to commit dde4eff47c82 ("clk: Look for parents with clkdev based clk_lookups") the check IS_ERR_OR_NULL() was performed which would have caught the NULL. Reading the description of this function it talks about returning NULL but that cannot be so at the moment. Update the function to check for hw before dereferencing it and return NULL if hw is NULL.
CVE-2024-27037 In the Linux kernel, the following vulnerability has been resolved: clk: zynq: Prevent null pointer dereference caused by kmalloc failure The kmalloc() in zynq_clk_setup() will return null if the physical memory has run out. As a result, if we use snprintf() to write data to the null address, the null pointer dereference bug will happen. This patch uses a stack variable to replace the kmalloc().
CVE-2024-27036 In the Linux kernel, the following vulnerability has been resolved: cifs: Fix writeback data corruption cifs writeback doesn't correctly handle the case where cifs_extend_writeback() hits a point where it is considering an additional folio, but this would overrun the wsize - at which point it drops out of the xarray scanning loop and calls xas_pause(). The problem is that xas_pause() advances the loop counter - thereby skipping that page. What needs to happen is for xas_reset() to be called any time we decide we don't want to process the page we're looking at, but rather send the request we are building and start a new one. Fix this by copying and adapting the netfslib writepages code as a temporary measure, with cifs writeback intending to be offloaded to netfslib in the near future. This also fixes the issue with the use of filemap_get_folios_tag() causing retry of a bunch of pages which the extender already dealt with. This can be tested by creating, say, a 64K file somewhere not on cifs (otherwise copy-offload may get underfoot), mounting a cifs share with a wsize of 64000, copying the file to it and then comparing the original file and the copy: dd if=/dev/urandom of=/tmp/64K bs=64k count=1 mount //192.168.6.1/test /mnt -o user=...,pass=...,wsize=64000 cp /tmp/64K /mnt/64K cmp /tmp/64K /mnt/64K Without the fix, the cmp fails at position 64000 (or shortly thereafter).
CVE-2024-27035 In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: fix to guarantee persisting compressed blocks by CP If data block in compressed cluster is not persisted with metadata during checkpoint, after SPOR, the data may be corrupted, let's guarantee to write compressed page by checkpoint.
CVE-2024-27034 In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: fix to cover normal cluster write with cp_rwsem When we overwrite compressed cluster w/ normal cluster, we should not unlock cp_rwsem during f2fs_write_raw_pages(), otherwise data will be corrupted if partial blocks were persisted before CP & SPOR, due to cluster metadata wasn't updated atomically.
CVE-2024-27033 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to remove unnecessary f2fs_bug_on() to avoid panic verify_blkaddr() will trigger panic once we inject fault into f2fs_is_valid_blkaddr(), fix to remove this unnecessary f2fs_bug_on().
CVE-2024-27032 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid potential panic during recovery During recovery, if FAULT_BLOCK is on, it is possible that f2fs_reserve_new_block() will return -ENOSPC during recovery, then it may trigger panic. Also, if fault injection rate is 1 and only FAULT_BLOCK fault type is on, it may encounter deadloop in loop of block reservation. Let's change as below to fix these issues: - remove bug_on() to avoid panic. - limit the loop count of block reservation to avoid potential deadloop.
CVE-2024-27031 In the Linux kernel, the following vulnerability has been resolved: NFS: Fix nfs_netfs_issue_read() xarray locking for writeback interrupt The loop inside nfs_netfs_issue_read() currently does not disable interrupts while iterating through pages in the xarray to submit for NFS read. This is not safe though since after taking xa_lock, another page in the mapping could be processed for writeback inside an interrupt, and deadlock can occur. The fix is simple and clean if we use xa_for_each_range(), which handles the iteration with RCU while reducing code complexity. The problem is easily reproduced with the following test: mount -o vers=3,fsc 127.0.0.1:/export /mnt/nfs dd if=/dev/zero of=/mnt/nfs/file1.bin bs=4096 count=1 echo 3 > /proc/sys/vm/drop_caches dd if=/mnt/nfs/file1.bin of=/dev/null umount /mnt/nfs On the console with a lockdep-enabled kernel a message similar to the following will be seen: ================================ WARNING: inconsistent lock state 6.7.0-lockdbg+ #10 Not tainted -------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. test5/1708 [HC0[0]:SC0[0]:HE1:SE1] takes: ffff888127baa598 (&xa->xa_lock#4){+.?.}-{3:3}, at: nfs_netfs_issue_read+0x1b2/0x4b0 [nfs] {IN-SOFTIRQ-W} state was registered at: lock_acquire+0x144/0x380 _raw_spin_lock_irqsave+0x4e/0xa0 __folio_end_writeback+0x17e/0x5c0 folio_end_writeback+0x93/0x1b0 iomap_finish_ioend+0xeb/0x6a0 blk_update_request+0x204/0x7f0 blk_mq_end_request+0x30/0x1c0 blk_complete_reqs+0x7e/0xa0 __do_softirq+0x113/0x544 __irq_exit_rcu+0xfe/0x120 irq_exit_rcu+0xe/0x20 sysvec_call_function_single+0x6f/0x90 asm_sysvec_call_function_single+0x1a/0x20 pv_native_safe_halt+0xf/0x20 default_idle+0x9/0x20 default_idle_call+0x67/0xa0 do_idle+0x2b5/0x300 cpu_startup_entry+0x34/0x40 start_secondary+0x19d/0x1c0 secondary_startup_64_no_verify+0x18f/0x19b irq event stamp: 176891 hardirqs last enabled at (176891): [<ffffffffa67a0be4>] _raw_spin_unlock_irqrestore+0x44/0x60 hardirqs last disabled at (176890): [<ffffffffa67a0899>] _raw_spin_lock_irqsave+0x79/0xa0 softirqs last enabled at (176646): [<ffffffffa515d91e>] __irq_exit_rcu+0xfe/0x120 softirqs last disabled at (176633): [<ffffffffa515d91e>] __irq_exit_rcu+0xfe/0x120 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&xa->xa_lock#4); <Interrupt> lock(&xa->xa_lock#4); *** DEADLOCK *** 2 locks held by test5/1708: #0: ffff888127baa498 (&sb->s_type->i_mutex_key#22){++++}-{4:4}, at: nfs_start_io_read+0x28/0x90 [nfs] #1: ffff888127baa650 (mapping.invalidate_lock#3){.+.+}-{4:4}, at: page_cache_ra_unbounded+0xa4/0x280 stack backtrace: CPU: 6 PID: 1708 Comm: test5 Kdump: loaded Not tainted 6.7.0-lockdbg+ Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014 Call Trace: dump_stack_lvl+0x5b/0x90 mark_lock+0xb3f/0xd20 __lock_acquire+0x77b/0x3360 _raw_spin_lock+0x34/0x80 nfs_netfs_issue_read+0x1b2/0x4b0 [nfs] netfs_begin_read+0x77f/0x980 [netfs] nfs_netfs_readahead+0x45/0x60 [nfs] nfs_readahead+0x323/0x5a0 [nfs] read_pages+0xf3/0x5c0 page_cache_ra_unbounded+0x1c8/0x280 filemap_get_pages+0x38c/0xae0 filemap_read+0x206/0x5e0 nfs_file_read+0xb7/0x140 [nfs] vfs_read+0x2a9/0x460 ksys_read+0xb7/0x140
CVE-2024-27030 In the Linux kernel, the following vulnerability has been resolved: octeontx2-af: Use separate handlers for interrupts For PF to AF interrupt vector and VF to AF vector same interrupt handler is registered which is causing race condition. When two interrupts are raised to two CPUs at same time then two cores serve same event corrupting the data.
CVE-2024-27029 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix mmhub client id out-of-bounds access Properly handle cid 0x140.
CVE-2024-27028 In the Linux kernel, the following vulnerability has been resolved: spi: spi-mt65xx: Fix NULL pointer access in interrupt handler The TX buffer in spi_transfer can be a NULL pointer, so the interrupt handler may end up writing to the invalid memory and cause crashes. Add a check to trans->tx_buf before using it.
CVE-2024-27027 In the Linux kernel, the following vulnerability has been resolved: dpll: fix dpll_xa_ref_*_del() for multiple registrations Currently, if there are multiple registrations of the same pin on the same dpll device, following warnings are observed: WARNING: CPU: 5 PID: 2212 at drivers/dpll/dpll_core.c:143 dpll_xa_ref_pin_del.isra.0+0x21e/0x230 WARNING: CPU: 5 PID: 2212 at drivers/dpll/dpll_core.c:223 __dpll_pin_unregister+0x2b3/0x2c0 The problem is, that in both dpll_xa_ref_dpll_del() and dpll_xa_ref_pin_del() registration is only removed from list in case the reference count drops to zero. That is wrong, the registration has to be removed always. To fix this, remove the registration from the list and free it unconditionally, instead of doing it only when the ref reference counter reaches zero.
CVE-2024-27026 In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix missing reserved tailroom Use rbi->len instead of rcd->len for non-dataring packet. Found issue: XDP_WARN: xdp_update_frame_from_buff(line:278): Driver BUG: missing reserved tailroom WARNING: CPU: 0 PID: 0 at net/core/xdp.c:586 xdp_warn+0xf/0x20 CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W O 6.5.1 #1 RIP: 0010:xdp_warn+0xf/0x20 ... ? xdp_warn+0xf/0x20 xdp_do_redirect+0x15f/0x1c0 vmxnet3_run_xdp+0x17a/0x400 [vmxnet3] vmxnet3_process_xdp+0xe4/0x760 [vmxnet3] ? vmxnet3_tq_tx_complete.isra.0+0x21e/0x2c0 [vmxnet3] vmxnet3_rq_rx_complete+0x7ad/0x1120 [vmxnet3] vmxnet3_poll_rx_only+0x2d/0xa0 [vmxnet3] __napi_poll+0x20/0x180 net_rx_action+0x177/0x390
CVE-2024-27025 In the Linux kernel, the following vulnerability has been resolved: nbd: null check for nla_nest_start nla_nest_start() may fail and return NULL. Insert a check and set errno based on other call sites within the same source code.
CVE-2024-27024 In the Linux kernel, the following vulnerability has been resolved: net/rds: fix WARNING in rds_conn_connect_if_down If connection isn't established yet, get_mr() will fail, trigger connection after get_mr().
CVE-2024-27023 In the Linux kernel, the following vulnerability has been resolved: md: Fix missing release of 'active_io' for flush submit_flushes atomic_set(&mddev->flush_pending, 1); rdev_for_each_rcu(rdev, mddev) atomic_inc(&mddev->flush_pending); bi->bi_end_io = md_end_flush submit_bio(bi); /* flush io is done first */ md_end_flush if (atomic_dec_and_test(&mddev->flush_pending)) percpu_ref_put(&mddev->active_io) -> active_io is not released if (atomic_dec_and_test(&mddev->flush_pending)) -> missing release of active_io For consequence, mddev_suspend() will wait for 'active_io' to be zero forever. Fix this problem by releasing 'active_io' in submit_flushes() if 'flush_pending' is decreased to zero.
CVE-2024-27022 In the Linux kernel, the following vulnerability has been resolved: fork: defer linking file vma until vma is fully initialized Thorvald reported a WARNING [1]. And the root cause is below race: CPU 1 CPU 2 fork hugetlbfs_fallocate dup_mmap hugetlbfs_punch_hole i_mmap_lock_write(mapping); vma_interval_tree_insert_after -- Child vma is visible through i_mmap tree. i_mmap_unlock_write(mapping); hugetlb_dup_vma_private -- Clear vma_lock outside i_mmap_rwsem! i_mmap_lock_write(mapping); hugetlb_vmdelete_list vma_interval_tree_foreach hugetlb_vma_trylock_write -- Vma_lock is cleared. tmp->vm_ops->open -- Alloc new vma_lock outside i_mmap_rwsem! hugetlb_vma_unlock_write -- Vma_lock is assigned!!! i_mmap_unlock_write(mapping); hugetlb_dup_vma_private() and hugetlb_vm_op_open() are called outside i_mmap_rwsem lock while vma lock can be used in the same time. Fix this by deferring linking file vma until vma is fully initialized. Those vmas should be initialized first before they can be used.
CVE-2024-27021 In the Linux kernel, the following vulnerability has been resolved: r8169: fix LED-related deadlock on module removal Binding devm_led_classdev_register() to the netdev is problematic because on module removal we get a RTNL-related deadlock. Fix this by avoiding the device-managed LED functions. Note: We can safely call led_classdev_unregister() for a LED even if registering it failed, because led_classdev_unregister() detects this and is a no-op in this case.
CVE-2024-27020 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get() nft_unregister_expr() can concurrent with __nft_expr_type_get(), and there is not any protection when iterate over nf_tables_expressions list in __nft_expr_type_get(). Therefore, there is potential data-race of nf_tables_expressions list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_expressions list in __nft_expr_type_get(), and use rcu_read_lock() in the caller nft_expr_type_get() to protect the entire type query process.
CVE-2024-27019 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_obj_type_get() nft_unregister_obj() can concurrent with __nft_obj_type_get(), and there is not any protection when iterate over nf_tables_objects list in __nft_obj_type_get(). Therefore, there is potential data-race of nf_tables_objects list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_objects list in __nft_obj_type_get(), and use rcu_read_lock() in the caller nft_obj_type_get() to protect the entire type query process.
CVE-2024-27018 In the Linux kernel, the following vulnerability has been resolved: netfilter: br_netfilter: skip conntrack input hook for promisc packets For historical reasons, when bridge device is in promisc mode, packets that are directed to the taps follow bridge input hook path. This patch adds a workaround to reset conntrack for these packets. Jianbo Liu reports warning splats in their test infrastructure where cloned packets reach the br_netfilter input hook to confirm the conntrack object. Scratch one bit from BR_INPUT_SKB_CB to annotate that this packet has reached the input hook because it is passed up to the bridge device to reach the taps. [ 57.571874] WARNING: CPU: 1 PID: 0 at net/bridge/br_netfilter_hooks.c:616 br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.572749] Modules linked in: xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat xt_addrtype xt_conntrack nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_isc si ib_umad rdma_cm ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5ctl mlx5_core [ 57.575158] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.8.0+ #19 [ 57.575700] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 57.576662] RIP: 0010:br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.577195] Code: fe ff ff 41 bd 04 00 00 00 be 04 00 00 00 e9 4a ff ff ff be 04 00 00 00 48 89 ef e8 f3 a9 3c e1 66 83 ad b4 00 00 00 04 eb 91 <0f> 0b e9 f1 fe ff ff 0f 0b e9 df fe ff ff 48 89 df e8 b3 53 47 e1 [ 57.578722] RSP: 0018:ffff88885f845a08 EFLAGS: 00010202 [ 57.579207] RAX: 0000000000000002 RBX: ffff88812dfe8000 RCX: 0000000000000000 [ 57.579830] RDX: ffff88885f845a60 RSI: ffff8881022dc300 RDI: 0000000000000000 [ 57.580454] RBP: ffff88885f845a60 R08: 0000000000000001 R09: 0000000000000003 [ 57.581076] R10: 00000000ffff1300 R11: 0000000000000002 R12: 0000000000000000 [ 57.581695] R13: ffff8881047ffe00 R14: ffff888108dbee00 R15: ffff88814519b800 [ 57.582313] FS: 0000000000000000(0000) GS:ffff88885f840000(0000) knlGS:0000000000000000 [ 57.583040] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 57.583564] CR2: 000000c4206aa000 CR3: 0000000103847001 CR4: 0000000000370eb0 [ 57.584194] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 57.584820] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 57.585440] Call Trace: [ 57.585721] <IRQ> [ 57.585976] ? __warn+0x7d/0x130 [ 57.586323] ? br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.586811] ? report_bug+0xf1/0x1c0 [ 57.587177] ? handle_bug+0x3f/0x70 [ 57.587539] ? exc_invalid_op+0x13/0x60 [ 57.587929] ? asm_exc_invalid_op+0x16/0x20 [ 57.588336] ? br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.588825] nf_hook_slow+0x3d/0xd0 [ 57.589188] ? br_handle_vlan+0x4b/0x110 [ 57.589579] br_pass_frame_up+0xfc/0x150 [ 57.589970] ? br_port_flags_change+0x40/0x40 [ 57.590396] br_handle_frame_finish+0x346/0x5e0 [ 57.590837] ? ipt_do_table+0x32e/0x430 [ 57.591221] ? br_handle_local_finish+0x20/0x20 [ 57.591656] br_nf_hook_thresh+0x4b/0xf0 [br_netfilter] [ 57.592286] ? br_handle_local_finish+0x20/0x20 [ 57.592802] br_nf_pre_routing_finish+0x178/0x480 [br_netfilter] [ 57.593348] ? br_handle_local_finish+0x20/0x20 [ 57.593782] ? nf_nat_ipv4_pre_routing+0x25/0x60 [nf_nat] [ 57.594279] br_nf_pre_routing+0x24c/0x550 [br_netfilter] [ 57.594780] ? br_nf_hook_thresh+0xf0/0xf0 [br_netfilter] [ 57.595280] br_handle_frame+0x1f3/0x3d0 [ 57.595676] ? br_handle_local_finish+0x20/0x20 [ 57.596118] ? br_handle_frame_finish+0x5e0/0x5e0 [ 57.596566] __netif_receive_skb_core+0x25b/0xfc0 [ 57.597017] ? __napi_build_skb+0x37/0x40 [ 57.597418] __netif_receive_skb_list_core+0xfb/0x220
CVE-2024-27017 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: walk over current view on netlink dump The generation mask can be updated while netlink dump is in progress. The pipapo set backend walk iterator cannot rely on it to infer what view of the datastructure is to be used. Add notation to specify if user wants to read/update the set. Based on patch from Florian Westphal.
CVE-2024-27016 In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable: validate pppoe header Ensure there is sufficient room to access the protocol field of the PPPoe header. Validate it once before the flowtable lookup, then use a helper function to access protocol field.
CVE-2024-27015 In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable: incorrect pppoe tuple pppoe traffic reaching ingress path does not match the flowtable entry because the pppoe header is expected to be at the network header offset. This bug causes a mismatch in the flow table lookup, so pppoe packets enter the classical forwarding path.
CVE-2024-27014 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Prevent deadlock while disabling aRFS When disabling aRFS under the `priv->state_lock`, any scheduled aRFS works are canceled using the `cancel_work_sync` function, which waits for the work to end if it has already started. However, while waiting for the work handler, the handler will try to acquire the `state_lock` which is already acquired. The worker acquires the lock to delete the rules if the state is down, which is not the worker's responsibility since disabling aRFS deletes the rules. Add an aRFS state variable, which indicates whether the aRFS is enabled and prevent adding rules when the aRFS is disabled. Kernel log: ====================================================== WARNING: possible circular locking dependency detected 6.7.0-rc4_net_next_mlx5_5483eb2 #1 Tainted: G I ------------------------------------------------------ ethtool/386089 is trying to acquire lock: ffff88810f21ce68 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}, at: __flush_work+0x74/0x4e0 but task is already holding lock: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&priv->state_lock){+.+.}-{3:3}: __mutex_lock+0x80/0xc90 arfs_handle_work+0x4b/0x3b0 [mlx5_core] process_one_work+0x1dc/0x4a0 worker_thread+0x1bf/0x3c0 kthread+0xd7/0x100 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x11/0x20 -> #0 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}: __lock_acquire+0x17b4/0x2c80 lock_acquire+0xd0/0x2b0 __flush_work+0x7a/0x4e0 __cancel_work_timer+0x131/0x1c0 arfs_del_rules+0x143/0x1e0 [mlx5_core] mlx5e_arfs_disable+0x1b/0x30 [mlx5_core] mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core] ethnl_set_channels+0x28f/0x3b0 ethnl_default_set_doit+0xec/0x240 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x188/0x2c0 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1a1/0x270 netlink_sendmsg+0x214/0x460 __sock_sendmsg+0x38/0x60 __sys_sendto+0x113/0x170 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x40/0xe0 entry_SYSCALL_64_after_hwframe+0x46/0x4e other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&priv->state_lock); lock((work_completion)(&rule->arfs_work)); lock(&priv->state_lock); lock((work_completion)(&rule->arfs_work)); *** DEADLOCK *** 3 locks held by ethtool/386089: #0: ffffffff82ea7210 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40 #1: ffffffff82e94c88 (rtnl_mutex){+.+.}-{3:3}, at: ethnl_default_set_doit+0xd3/0x240 #2: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core] stack backtrace: CPU: 15 PID: 386089 Comm: ethtool Tainted: G I 6.7.0-rc4_net_next_mlx5_5483eb2 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x60/0xa0 check_noncircular+0x144/0x160 __lock_acquire+0x17b4/0x2c80 lock_acquire+0xd0/0x2b0 ? __flush_work+0x74/0x4e0 ? save_trace+0x3e/0x360 ? __flush_work+0x74/0x4e0 __flush_work+0x7a/0x4e0 ? __flush_work+0x74/0x4e0 ? __lock_acquire+0xa78/0x2c80 ? lock_acquire+0xd0/0x2b0 ? mark_held_locks+0x49/0x70 __cancel_work_timer+0x131/0x1c0 ? mark_held_locks+0x49/0x70 arfs_del_rules+0x143/0x1e0 [mlx5_core] mlx5e_arfs_disable+0x1b/0x30 [mlx5_core] mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core] ethnl_set_channels+0x28f/0x3b0 ethnl_default_set_doit+0xec/0x240 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x188/0x2c0 ? ethn ---truncated---
CVE-2024-27013 In the Linux kernel, the following vulnerability has been resolved: tun: limit printing rate when illegal packet received by tun dev vhost_worker will call tun call backs to receive packets. If too many illegal packets arrives, tun_do_read will keep dumping packet contents. When console is enabled, it will costs much more cpu time to dump packet and soft lockup will be detected. net_ratelimit mechanism can be used to limit the dumping rate. PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980" #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e #3 [fffffe00003fced0] do_nmi at ffffffff8922660d #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663 [exception RIP: io_serial_in+20] RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002 RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000 RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0 RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020 R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124 #11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07 #12 [ffffa65531497b68] printk at ffffffff89318306 #13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765 #14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun] #15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun] #16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net] #17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost] #18 [ffffa65531497f10] kthread at ffffffff892d2e72 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f
CVE-2024-27012 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: restore set elements when delete set fails From abort path, nft_mapelem_activate() needs to restore refcounters to the original state. Currently, it uses the set->ops->walk() to iterate over these set elements. The existing set iterator skips inactive elements in the next generation, this does not work from the abort path to restore the original state since it has to skip active elements instead (not inactive ones). This patch moves the check for inactive elements to the set iterator callback, then it reverses the logic for the .activate case which needs to skip active elements. Toggle next generation bit for elements when delete set command is invoked and call nft_clear() from .activate (abort) path to restore the next generation bit. The splat below shows an object in mappings memleak: [43929.457523] ------------[ cut here ]------------ [43929.457532] WARNING: CPU: 0 PID: 1139 at include/net/netfilter/nf_tables.h:1237 nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [...] [43929.458014] RIP: 0010:nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458076] Code: 83 f8 01 77 ab 49 8d 7c 24 08 e8 37 5e d0 de 49 8b 6c 24 08 48 8d 7d 50 e8 e9 5c d0 de 8b 45 50 8d 50 ff 89 55 50 85 c0 75 86 <0f> 0b eb 82 0f 0b eb b3 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 [43929.458081] RSP: 0018:ffff888140f9f4b0 EFLAGS: 00010246 [43929.458086] RAX: 0000000000000000 RBX: ffff8881434f5288 RCX: dffffc0000000000 [43929.458090] RDX: 00000000ffffffff RSI: ffffffffa26d28a7 RDI: ffff88810ecc9550 [43929.458093] RBP: ffff88810ecc9500 R08: 0000000000000001 R09: ffffed10281f3e8f [43929.458096] R10: 0000000000000003 R11: ffff0000ffff0000 R12: ffff8881434f52a0 [43929.458100] R13: ffff888140f9f5f4 R14: ffff888151c7a800 R15: 0000000000000002 [43929.458103] FS: 00007f0c687c4740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000 [43929.458107] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [43929.458111] CR2: 00007f58dbe5b008 CR3: 0000000123602005 CR4: 00000000001706f0 [43929.458114] Call Trace: [43929.458118] <TASK> [43929.458121] ? __warn+0x9f/0x1a0 [43929.458127] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458188] ? report_bug+0x1b1/0x1e0 [43929.458196] ? handle_bug+0x3c/0x70 [43929.458200] ? exc_invalid_op+0x17/0x40 [43929.458211] ? nft_setelem_data_deactivate+0xd7/0xf0 [nf_tables] [43929.458271] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458332] nft_mapelem_deactivate+0x24/0x30 [nf_tables] [43929.458392] nft_rhash_walk+0xdd/0x180 [nf_tables] [43929.458453] ? __pfx_nft_rhash_walk+0x10/0x10 [nf_tables] [43929.458512] ? rb_insert_color+0x2e/0x280 [43929.458520] nft_map_deactivate+0xdc/0x1e0 [nf_tables] [43929.458582] ? __pfx_nft_map_deactivate+0x10/0x10 [nf_tables] [43929.458642] ? __pfx_nft_mapelem_deactivate+0x10/0x10 [nf_tables] [43929.458701] ? __rcu_read_unlock+0x46/0x70 [43929.458709] nft_delset+0xff/0x110 [nf_tables] [43929.458769] nft_flush_table+0x16f/0x460 [nf_tables] [43929.458830] nf_tables_deltable+0x501/0x580 [nf_tables]
CVE-2024-27011 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix memleak in map from abort path The delete set command does not rely on the transaction object for element removal, therefore, a combination of delete element + delete set from the abort path could result in restoring twice the refcount of the mapping. Check for inactive element in the next generation for the delete element command in the abort path, skip restoring state if next generation bit has been already cleared. This is similar to the activate logic using the set walk iterator. [ 6170.286929] ------------[ cut here ]------------ [ 6170.286939] WARNING: CPU: 6 PID: 790302 at net/netfilter/nf_tables_api.c:2086 nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287071] Modules linked in: [...] [ 6170.287633] CPU: 6 PID: 790302 Comm: kworker/6:2 Not tainted 6.9.0-rc3+ #365 [ 6170.287768] RIP: 0010:nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287886] Code: df 48 8d 7d 58 e8 69 2e 3b df 48 8b 7d 58 e8 80 1b 37 df 48 8d 7d 68 e8 57 2e 3b df 48 8b 7d 68 e8 6e 1b 37 df 48 89 ef eb c4 <0f> 0b 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 0f [ 6170.287895] RSP: 0018:ffff888134b8fd08 EFLAGS: 00010202 [ 6170.287904] RAX: 0000000000000001 RBX: ffff888125bffb28 RCX: dffffc0000000000 [ 6170.287912] RDX: 0000000000000003 RSI: ffffffffa20298ab RDI: ffff88811ebe4750 [ 6170.287919] RBP: ffff88811ebe4700 R08: ffff88838e812650 R09: fffffbfff0623a55 [ 6170.287926] R10: ffffffff8311d2af R11: 0000000000000001 R12: ffff888125bffb10 [ 6170.287933] R13: ffff888125bffb10 R14: dead000000000122 R15: dead000000000100 [ 6170.287940] FS: 0000000000000000(0000) GS:ffff888390b00000(0000) knlGS:0000000000000000 [ 6170.287948] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6170.287955] CR2: 00007fd31fc00710 CR3: 0000000133f60004 CR4: 00000000001706f0 [ 6170.287962] Call Trace: [ 6170.287967] <TASK> [ 6170.287973] ? __warn+0x9f/0x1a0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.288104] ? handle_bug+0x3c/0x70 [ 6170.288112] ? exc_invalid_op+0x17/0x40 [ 6170.288120] ? asm_exc_invalid_op+0x1a/0x20 [ 6170.288132] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288243] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288366] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288483] nf_tables_trans_destroy_work+0x588/0x590 [nf_tables]
CVE-2024-27010 In the Linux kernel, the following vulnerability has been resolved: net/sched: Fix mirred deadlock on device recursion When the mirred action is used on a classful egress qdisc and a packet is mirrored or redirected to self we hit a qdisc lock deadlock. See trace below. [..... other info removed for brevity....] [ 82.890906] [ 82.890906] ============================================ [ 82.890906] WARNING: possible recursive locking detected [ 82.890906] 6.8.0-05205-g77fadd89fe2d-dirty #213 Tainted: G W [ 82.890906] -------------------------------------------- [ 82.890906] ping/418 is trying to acquire lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] but task is already holding lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] other info that might help us debug this: [ 82.890906] Possible unsafe locking scenario: [ 82.890906] [ 82.890906] CPU0 [ 82.890906] ---- [ 82.890906] lock(&sch->q.lock); [ 82.890906] lock(&sch->q.lock); [ 82.890906] [ 82.890906] *** DEADLOCK *** [ 82.890906] [..... other info removed for brevity....] Example setup (eth0->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 Another example(eth0->eth1->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth1 tc qdisc add dev eth1 root handle 1: htb default 30 tc filter add dev eth1 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 We fix this by adding an owner field (CPU id) to struct Qdisc set after root qdisc is entered. When the softirq enters it a second time, if the qdisc owner is the same CPU, the packet is dropped to break the loop.
CVE-2024-27009 In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix race condition during online processing A race condition exists in ccw_device_set_online() that can cause the online process to fail, leaving the affected device in an inconsistent state. As a result, subsequent attempts to set that device online fail with return code ENODEV. The problem occurs when a path verification request arrives after a wait for final device state completed, but before the result state is evaluated. Fix this by ensuring that the CCW-device lock is held between determining final state and checking result state. Note that since: commit 2297791c92d0 ("s390/cio: dont unregister subchannel from child-drivers") path verification requests are much more likely to occur during boot, resulting in an increased chance of this race condition occurring.
CVE-2024-27008 In the Linux kernel, the following vulnerability has been resolved: drm: nv04: Fix out of bounds access When Output Resource (dcb->or) value is assigned in fabricate_dcb_output(), there may be out of bounds access to dac_users array in case dcb->or is zero because ffs(dcb->or) is used as index there. The 'or' argument of fabricate_dcb_output() must be interpreted as a number of bit to set, not value. Utilize macros from 'enum nouveau_or' in calls instead of hardcoding. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-27007 In the Linux kernel, the following vulnerability has been resolved: userfaultfd: change src_folio after ensuring it's unpinned in UFFDIO_MOVE Commit d7a08838ab74 ("mm: userfaultfd: fix unexpected change to src_folio when UFFDIO_MOVE fails") moved the src_folio->{mapping, index} changing to after clearing the page-table and ensuring that it's not pinned. This avoids failure of swapout+migration and possibly memory corruption. However, the commit missed fixing it in the huge-page case.
CVE-2024-27006 In the Linux kernel, the following vulnerability has been resolved: thermal/debugfs: Add missing count increment to thermal_debug_tz_trip_up() The count field in struct trip_stats, representing the number of times the zone temperature was above the trip point, needs to be incremented in thermal_debug_tz_trip_up(), for two reasons. First, if a trip point is crossed on the way up for the first time, thermal_debug_update_temp() called from update_temperature() does not see it because it has not been added to trips_crossed[] array in the thermal zone's struct tz_debugfs object yet. Therefore, when thermal_debug_tz_trip_up() is called after that, the trip point's count value is 0, and the attempt to divide by it during the average temperature computation leads to a divide error which causes the kernel to crash. Setting the count to 1 before the division by incrementing it fixes this problem. Second, if a trip point is crossed on the way up, but it has been crossed on the way up already before, its count value needs to be incremented to make a record of the fact that the zone temperature is above the trip now. Without doing that, if the mitigations applied after crossing the trip cause the zone temperature to drop below its threshold, the count will not be updated for this episode at all and the average temperature in the trip statistics record will be somewhat higher than it should be. Cc :6.8+ <stable@vger.kernel.org> # 6.8+
CVE-2024-27005 In the Linux kernel, the following vulnerability has been resolved: interconnect: Don't access req_list while it's being manipulated The icc_lock mutex was split into separate icc_lock and icc_bw_lock mutexes in [1] to avoid lockdep splats. However, this didn't adequately protect access to icc_node::req_list. The icc_set_bw() function will eventually iterate over req_list while only holding icc_bw_lock, but req_list can be modified while only holding icc_lock. This causes races between icc_set_bw(), of_icc_get(), and icc_put(). Example A: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); icc_put(path_b) mutex_lock(&icc_lock); aggregate_requests() hlist_for_each_entry(r, ... hlist_del(... <r = invalid pointer> Example B: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); path_b = of_icc_get() of_icc_get_by_index() mutex_lock(&icc_lock); path_find() path_init() aggregate_requests() hlist_for_each_entry(r, ... hlist_add_head(... <r = invalid pointer> Fix this by ensuring icc_bw_lock is always held before manipulating icc_node::req_list. The additional places icc_bw_lock is held don't perform any memory allocations, so we should still be safe from the original lockdep splats that motivated the separate locks. [1] commit af42269c3523 ("interconnect: Fix locking for runpm vs reclaim")
CVE-2024-27004 In the Linux kernel, the following vulnerability has been resolved: clk: Get runtime PM before walking tree during disable_unused Doug reported [1] the following hung task: INFO: task swapper/0:1 blocked for more than 122 seconds. Not tainted 5.15.149-21875-gf795ebc40eb8 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:swapper/0 state:D stack: 0 pid: 1 ppid: 0 flags:0x00000008 Call trace: __switch_to+0xf4/0x1f4 __schedule+0x418/0xb80 schedule+0x5c/0x10c rpm_resume+0xe0/0x52c rpm_resume+0x178/0x52c __pm_runtime_resume+0x58/0x98 clk_pm_runtime_get+0x30/0xb0 clk_disable_unused_subtree+0x58/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused+0x4c/0xe4 do_one_initcall+0xcc/0x2d8 do_initcall_level+0xa4/0x148 do_initcalls+0x5c/0x9c do_basic_setup+0x24/0x30 kernel_init_freeable+0xec/0x164 kernel_init+0x28/0x120 ret_from_fork+0x10/0x20 INFO: task kworker/u16:0:9 blocked for more than 122 seconds. Not tainted 5.15.149-21875-gf795ebc40eb8 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u16:0 state:D stack: 0 pid: 9 ppid: 2 flags:0x00000008 Workqueue: events_unbound deferred_probe_work_func Call trace: __switch_to+0xf4/0x1f4 __schedule+0x418/0xb80 schedule+0x5c/0x10c schedule_preempt_disabled+0x2c/0x48 __mutex_lock+0x238/0x488 __mutex_lock_slowpath+0x1c/0x28 mutex_lock+0x50/0x74 clk_prepare_lock+0x7c/0x9c clk_core_prepare_lock+0x20/0x44 clk_prepare+0x24/0x30 clk_bulk_prepare+0x40/0xb0 mdss_runtime_resume+0x54/0x1c8 pm_generic_runtime_resume+0x30/0x44 __genpd_runtime_resume+0x68/0x7c genpd_runtime_resume+0x108/0x1f4 __rpm_callback+0x84/0x144 rpm_callback+0x30/0x88 rpm_resume+0x1f4/0x52c rpm_resume+0x178/0x52c __pm_runtime_resume+0x58/0x98 __device_attach+0xe0/0x170 device_initial_probe+0x1c/0x28 bus_probe_device+0x3c/0x9c device_add+0x644/0x814 mipi_dsi_device_register_full+0xe4/0x170 devm_mipi_dsi_device_register_full+0x28/0x70 ti_sn_bridge_probe+0x1dc/0x2c0 auxiliary_bus_probe+0x4c/0x94 really_probe+0xcc/0x2c8 __driver_probe_device+0xa8/0x130 driver_probe_device+0x48/0x110 __device_attach_driver+0xa4/0xcc bus_for_each_drv+0x8c/0xd8 __device_attach+0xf8/0x170 device_initial_probe+0x1c/0x28 bus_probe_device+0x3c/0x9c deferred_probe_work_func+0x9c/0xd8 process_one_work+0x148/0x518 worker_thread+0x138/0x350 kthread+0x138/0x1e0 ret_from_fork+0x10/0x20 The first thread is walking the clk tree and calling clk_pm_runtime_get() to power on devices required to read the clk hardware via struct clk_ops::is_enabled(). This thread holds the clk prepare_lock, and is trying to runtime PM resume a device, when it finds that the device is in the process of resuming so the thread schedule()s away waiting for the device to finish resuming before continuing. The second thread is runtime PM resuming the same device, but the runtime resume callback is calling clk_prepare(), trying to grab the prepare_lock waiting on the first thread. This is a classic ABBA deadlock. To properly fix the deadlock, we must never runtime PM resume or suspend a device with the clk prepare_lock held. Actually doing that is near impossible today because the global prepare_lock would have to be dropped in the middle of the tree, the device runtime PM resumed/suspended, and then the prepare_lock grabbed again to ensure consistency of the clk tree topology. If anything changes with the clk tree in the meantime, we've lost and will need to start the operation all over again. Luckily, most of the time we're simply incrementing or decrementing the runtime PM count on an active device, so we don't have the chance to schedule away with the prepare_lock held. Let's fix this immediate problem that can be ---truncated---
CVE-2024-27003 In the Linux kernel, the following vulnerability has been resolved: clk: Get runtime PM before walking tree for clk_summary Similar to the previous commit, we should make sure that all devices are runtime resumed before printing the clk_summary through debugfs. Failure to do so would result in a deadlock if the thread is resuming a device to print clk state and that device is also runtime resuming in another thread, e.g the screen is turning on and the display driver is starting up. We remove the calls to clk_pm_runtime_{get,put}() in this path because they're superfluous now that we know the devices are runtime resumed. This also squashes a bug where the return value of clk_pm_runtime_get() wasn't checked, leading to an RPM count underflow on error paths.
CVE-2024-27002 In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: Do a runtime PM get on controllers during probe mt8183-mfgcfg has a mutual dependency with genpd during the probing stage, which leads to a deadlock in the following call stack: CPU0: genpd_lock --> clk_prepare_lock genpd_power_off_work_fn() genpd_lock() generic_pm_domain::power_off() clk_unprepare() clk_prepare_lock() CPU1: clk_prepare_lock --> genpd_lock clk_register() __clk_core_init() clk_prepare_lock() clk_pm_runtime_get() genpd_lock() Do a runtime PM get at the probe function to make sure clk_register() won't acquire the genpd lock. Instead of only modifying mt8183-mfgcfg, do this on all mediatek clock controller probings because we don't believe this would cause any regression. Verified on MT8183 and MT8192 Chromebooks.
CVE-2024-27001 In the Linux kernel, the following vulnerability has been resolved: comedi: vmk80xx: fix incomplete endpoint checking While vmk80xx does have endpoint checking implemented, some things can fall through the cracks. Depending on the hardware model, URBs can have either bulk or interrupt type, and current version of vmk80xx_find_usb_endpoints() function does not take that fully into account. While this warning does not seem to be too harmful, at the very least it will crash systems with 'panic_on_warn' set on them. Fix the issue found by Syzkaller [1] by somewhat simplifying the endpoint checking process with usb_find_common_endpoints() and ensuring that only expected endpoint types are present. This patch has not been tested on real hardware. [1] Syzkaller report: usb 1-1: BOGUS urb xfer, pipe 1 != type 3 WARNING: CPU: 0 PID: 781 at drivers/usb/core/urb.c:504 usb_submit_urb+0xc4e/0x18c0 drivers/usb/core/urb.c:503 ... Call Trace: <TASK> usb_start_wait_urb+0x113/0x520 drivers/usb/core/message.c:59 vmk80xx_reset_device drivers/comedi/drivers/vmk80xx.c:227 [inline] vmk80xx_auto_attach+0xa1c/0x1a40 drivers/comedi/drivers/vmk80xx.c:818 comedi_auto_config+0x238/0x380 drivers/comedi/drivers.c:1067 usb_probe_interface+0x5cd/0xb00 drivers/usb/core/driver.c:399 ... Similar issue also found by Syzkaller:
CVE-2024-27000 In the Linux kernel, the following vulnerability has been resolved: serial: mxs-auart: add spinlock around changing cts state The uart_handle_cts_change() function in serial_core expects the caller to hold uport->lock. For example, I have seen the below kernel splat, when the Bluetooth driver is loaded on an i.MX28 board. [ 85.119255] ------------[ cut here ]------------ [ 85.124413] WARNING: CPU: 0 PID: 27 at /drivers/tty/serial/serial_core.c:3453 uart_handle_cts_change+0xb4/0xec [ 85.134694] Modules linked in: hci_uart bluetooth ecdh_generic ecc wlcore_sdio configfs [ 85.143314] CPU: 0 PID: 27 Comm: kworker/u3:0 Not tainted 6.6.3-00021-gd62a2f068f92 #1 [ 85.151396] Hardware name: Freescale MXS (Device Tree) [ 85.156679] Workqueue: hci0 hci_power_on [bluetooth] (...) [ 85.191765] uart_handle_cts_change from mxs_auart_irq_handle+0x380/0x3f4 [ 85.198787] mxs_auart_irq_handle from __handle_irq_event_percpu+0x88/0x210 (...)
CVE-2024-26999 In the Linux kernel, the following vulnerability has been resolved: serial/pmac_zilog: Remove flawed mitigation for rx irq flood The mitigation was intended to stop the irq completely. That may be better than a hard lock-up but it turns out that you get a crash anyway if you're using pmac_zilog as a serial console: ttyPZ0: pmz: rx irq flood ! BUG: spinlock recursion on CPU#0, swapper/0 That's because the pr_err() call in pmz_receive_chars() results in pmz_console_write() attempting to lock a spinlock already locked in pmz_interrupt(). With CONFIG_DEBUG_SPINLOCK=y, this produces a fatal BUG splat. The spinlock in question is the one in struct uart_port. Even when it's not fatal, the serial port rx function ceases to work. Also, the iteration limit doesn't play nicely with QEMU, as can be seen in the bug report linked below. A web search for other reports of the error message "pmz: rx irq flood" didn't produce anything. So I don't think this code is needed any more. Remove it.
CVE-2024-26998 In the Linux kernel, the following vulnerability has been resolved: serial: core: Clearing the circular buffer before NULLifying it The circular buffer is NULLified in uart_tty_port_shutdown() under the spin lock. However, the PM or other timer based callbacks may still trigger after this event without knowning that buffer pointer is not valid. Since the serial code is a bit inconsistent in checking the buffer state (some rely on the head-tail positions, some on the buffer pointer), it's better to have both aligned, i.e. buffer pointer to be NULL and head-tail possitions to be the same, meaning it's empty. This will prevent asynchronous calls to dereference NULL pointer as reported recently in 8250 case: BUG: kernel NULL pointer dereference, address: 00000cf5 Workqueue: pm pm_runtime_work EIP: serial8250_tx_chars (drivers/tty/serial/8250/8250_port.c:1809) ... ? serial8250_tx_chars (drivers/tty/serial/8250/8250_port.c:1809) __start_tx (drivers/tty/serial/8250/8250_port.c:1551) serial8250_start_tx (drivers/tty/serial/8250/8250_port.c:1654) serial_port_runtime_suspend (include/linux/serial_core.h:667 drivers/tty/serial/serial_port.c:63) __rpm_callback (drivers/base/power/runtime.c:393) ? serial_port_remove (drivers/tty/serial/serial_port.c:50) rpm_suspend (drivers/base/power/runtime.c:447) The proposed change will prevent ->start_tx() to be called during suspend on shut down port.
CVE-2024-26997 In the Linux kernel, the following vulnerability has been resolved: usb: dwc2: host: Fix dereference issue in DDMA completion flow. Fixed variable dereference issue in DDMA completion flow.
CVE-2024-26996 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error When ncm function is working and then stop usb0 interface for link down, eth_stop() is called. At this piont, accidentally if usb transport error should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled. After that, ncm_disable() is called to disable for ncm unbind but gether_disconnect() is never called since 'in_ep' is not enabled. As the result, ncm object is released in ncm unbind but 'dev->port_usb' associated to 'ncm->port' is not NULL. And when ncm bind again to recover netdev, ncm object is reallocated but usb0 interface is already associated to previous released ncm object. Therefore, once usb0 interface is up and eth_start_xmit() is called, released ncm object is dereferrenced and it might cause use-after-free memory. [function unlink via configfs] usb0: eth_stop dev->port_usb=ffffff9b179c3200 --> error happens in usb_ep_enable(). NCM: ncm_disable: ncm=ffffff9b179c3200 --> no gether_disconnect() since ncm->port.in_ep->enabled is false. NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200 NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm [function link via configfs] NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000 NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000 NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0 usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm usb0: eth_start dev->port_usb=ffffff9b179c3200 <-- eth_start_xmit() --> dev->wrap() Unable to handle kernel paging request at virtual address dead00000000014f This patch addresses the issue by checking if 'ncm->netdev' is not NULL at ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'. It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect rather than check 'ncm->port.in_ep->enabled' since it might not be enabled but the gether connection might be established.
CVE-2024-26995 In the Linux kernel, the following vulnerability has been resolved: usb: typec: tcpm: Correct the PDO counting in pd_set Off-by-one errors happen because nr_snk_pdo and nr_src_pdo are incorrectly added one. The index of the loop is equal to the number of PDOs to be updated when leaving the loop and it doesn't need to be added one. When doing the power negotiation, TCPM relies on the "nr_snk_pdo" as the size of the local sink PDO array to match the Source capabilities of the partner port. If the off-by-one overflow occurs, a wrong RDO might be sent and unexpected power transfer might happen such as over voltage or over current (than expected). "nr_src_pdo" is used to set the Rp level when the port is in Source role. It is also the array size of the local Source capabilities when filling up the buffer which will be sent as the Source PDOs (such as in Power Negotiation). If the off-by-one overflow occurs, a wrong Rp level might be set and wrong Source PDOs will be sent to the partner port. This could potentially cause over current or port resets.
CVE-2024-26994 In the Linux kernel, the following vulnerability has been resolved: speakup: Avoid crash on very long word In case a console is set up really large and contains a really long word (> 256 characters), we have to stop before the length of the word buffer.
CVE-2024-26993 In the Linux kernel, the following vulnerability has been resolved: fs: sysfs: Fix reference leak in sysfs_break_active_protection() The sysfs_break_active_protection() routine has an obvious reference leak in its error path. If the call to kernfs_find_and_get() fails then kn will be NULL, so the companion sysfs_unbreak_active_protection() routine won't get called (and would only cause an access violation by trying to dereference kn->parent if it was called). As a result, the reference to kobj acquired at the start of the function will never be released. Fix the leak by adding an explicit kobject_put() call when kn is NULL.
CVE-2024-26992 In the Linux kernel, the following vulnerability has been resolved: KVM: x86/pmu: Disable support for adaptive PEBS Drop support for virtualizing adaptive PEBS, as KVM's implementation is architecturally broken without an obvious/easy path forward, and because exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak host kernel addresses to the guest. Bug #1 is that KVM doesn't account for the upper 32 bits of IA32_FIXED_CTR_CTRL when (re)programming fixed counters, e.g fixed_ctrl_field() drops the upper bits, reprogram_fixed_counters() stores local variables as u8s and truncates the upper bits too, etc. Bug #2 is that, because KVM _always_ sets precise_ip to a non-zero value for PEBS events, perf will _always_ generate an adaptive record, even if the guest requested a basic record. Note, KVM will also enable adaptive PEBS in individual *counter*, even if adaptive PEBS isn't exposed to the guest, but this is benign as MSR_PEBS_DATA_CFG is guaranteed to be zero, i.e. the guest will only ever see Basic records. Bug #3 is in perf. intel_pmu_disable_fixed() doesn't clear the upper bits either, i.e. leaves ICL_FIXED_0_ADAPTIVE set, and intel_pmu_enable_fixed() effectively doesn't clear ICL_FIXED_0_ADAPTIVE either. I.e. perf _always_ enables ADAPTIVE counters, regardless of what KVM requests. Bug #4 is that adaptive PEBS *might* effectively bypass event filters set by the host, as "Updated Memory Access Info Group" records information that might be disallowed by userspace via KVM_SET_PMU_EVENT_FILTER. Bug #5 is that KVM doesn't ensure LBR MSRs hold guest values (or at least zeros) when entering a vCPU with adaptive PEBS, which allows the guest to read host LBRs, i.e. host RIPs/addresses, by enabling "LBR Entries" records. Disable adaptive PEBS support as an immediate fix due to the severity of the LBR leak in particular, and because fixing all of the bugs will be non-trivial, e.g. not suitable for backporting to stable kernels. Note! This will break live migration, but trying to make KVM play nice with live migration would be quite complicated, wouldn't be guaranteed to work (i.e. KVM might still kill/confuse the guest), and it's not clear that there are any publicly available VMMs that support adaptive PEBS, let alone live migrate VMs that support adaptive PEBS, e.g. QEMU doesn't support PEBS in any capacity.
CVE-2024-26991 In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: x86: Don't overflow lpage_info when checking attributes Fix KVM_SET_MEMORY_ATTRIBUTES to not overflow lpage_info array and trigger KASAN splat, as seen in the private_mem_conversions_test selftest. When memory attributes are set on a GFN range, that range will have specific properties applied to the TDP. A huge page cannot be used when the attributes are inconsistent, so they are disabled for those the specific huge pages. For internal KVM reasons, huge pages are also not allowed to span adjacent memslots regardless of whether the backing memory could be mapped as huge. What GFNs support which huge page sizes is tracked by an array of arrays 'lpage_info' on the memslot, of &#8216;kvm_lpage_info&#8217; structs. Each index of lpage_info contains a vmalloc allocated array of these for a specific supported page size. The kvm_lpage_info denotes whether a specific huge page (GFN and page size) on the memslot is supported. These arrays include indices for unaligned head and tail huge pages. Preventing huge pages from spanning adjacent memslot is covered by incrementing the count in head and tail kvm_lpage_info when the memslot is allocated, but disallowing huge pages for memory that has mixed attributes has to be done in a more complicated way. During the KVM_SET_MEMORY_ATTRIBUTES ioctl KVM updates lpage_info for each memslot in the range that has mismatched attributes. KVM does this a memslot at a time, and marks a special bit, KVM_LPAGE_MIXED_FLAG, in the kvm_lpage_info for any huge page. This bit is essentially a permanently elevated count. So huge pages will not be mapped for the GFN at that page size if the count is elevated in either case: a huge head or tail page unaligned to the memslot or if KVM_LPAGE_MIXED_FLAG is set because it has mixed attributes. To determine whether a huge page has consistent attributes, the KVM_SET_MEMORY_ATTRIBUTES operation checks an xarray to make sure it consistently has the incoming attribute. Since level - 1 huge pages are aligned to level huge pages, it employs an optimization. As long as the level - 1 huge pages are checked first, it can just check these and assume that if each level - 1 huge page contained within the level sized huge page is not mixed, then the level size huge page is not mixed. This optimization happens in the helper hugepage_has_attrs(). Unfortunately, although the kvm_lpage_info array representing page size 'level' will contain an entry for an unaligned tail page of size level, the array for level - 1 will not contain an entry for each GFN at page size level. The level - 1 array will only contain an index for any unaligned region covered by level - 1 huge page size, which can be a smaller region. So this causes the optimization to overflow the level - 1 kvm_lpage_info and perform a vmalloc out of bounds read. In some cases of head and tail pages where an overflow could happen, callers skip the operation completely as KVM_LPAGE_MIXED_FLAG is not required to prevent huge pages as discussed earlier. But for memslots that are smaller than the 1GB page size, it does call hugepage_has_attrs(). In this case the huge page is both the head and tail page. The issue can be observed simply by compiling the kernel with CONFIG_KASAN_VMALLOC and running the selftest &#8220;private_mem_conversions_test&#8221;, which produces the output like the following: BUG: KASAN: vmalloc-out-of-bounds in hugepage_has_attrs+0x7e/0x110 Read of size 4 at addr ffffc900000a3008 by task private_mem_con/169 Call Trace: dump_stack_lvl print_report ? __virt_addr_valid ? hugepage_has_attrs ? hugepage_has_attrs kasan_report ? hugepage_has_attrs hugepage_has_attrs kvm_arch_post_set_memory_attributes kvm_vm_ioctl It is a little ambiguous whether the unaligned head page (in the bug case also the tail page) should be expected to have KVM_LPAGE_MIXED_FLAG set. It is not functionally required, as the unal ---truncated---
CVE-2024-26990 In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: Write-protect L2 SPTEs in TDP MMU when clearing dirty status Check kvm_mmu_page_ad_need_write_protect() when deciding whether to write-protect or clear D-bits on TDP MMU SPTEs, so that the TDP MMU accounts for any role-specific reasons for disabling D-bit dirty logging. Specifically, TDP MMU SPTEs must be write-protected when the TDP MMU is being used to run an L2 (i.e. L1 has disabled EPT) and PML is enabled. KVM always disables PML when running L2, even when L1 and L2 GPAs are in the some domain, so failing to write-protect TDP MMU SPTEs will cause writes made by L2 to not be reflected in the dirty log. [sean: massage shortlog and changelog, tweak ternary op formatting]
CVE-2024-26989 In the Linux kernel, the following vulnerability has been resolved: arm64: hibernate: Fix level3 translation fault in swsusp_save() On arm64 machines, swsusp_save() faults if it attempts to access MEMBLOCK_NOMAP memory ranges. This can be reproduced in QEMU using UEFI when booting with rodata=off debug_pagealloc=off and CONFIG_KFENCE=n: Unable to handle kernel paging request at virtual address ffffff8000000000 Mem abort info: ESR = 0x0000000096000007 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x07: level 3 translation fault Data abort info: ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 swapper pgtable: 4k pages, 39-bit VAs, pgdp=00000000eeb0b000 [ffffff8000000000] pgd=180000217fff9803, p4d=180000217fff9803, pud=180000217fff9803, pmd=180000217fff8803, pte=0000000000000000 Internal error: Oops: 0000000096000007 [#1] SMP Internal error: Oops: 0000000096000007 [#1] SMP Modules linked in: xt_multiport ipt_REJECT nf_reject_ipv4 xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 libcrc32c iptable_filter bpfilter rfkill at803x snd_hda_codec_hdmi snd_hda_intel snd_intel_dspcfg dwmac_generic stmmac_platform snd_hda_codec stmmac joydev pcs_xpcs snd_hda_core phylink ppdev lp parport ramoops reed_solomon ip_tables x_tables nls_iso8859_1 vfat multipath linear amdgpu amdxcp drm_exec gpu_sched drm_buddy hid_generic usbhid hid radeon video drm_suballoc_helper drm_ttm_helper ttm i2c_algo_bit drm_display_helper cec drm_kms_helper drm CPU: 0 PID: 3663 Comm: systemd-sleep Not tainted 6.6.2+ #76 Source Version: 4e22ed63a0a48e7a7cff9b98b7806d8d4add7dc0 Hardware name: Greatwall GW-XXXXXX-XXX/GW-XXXXXX-XXX, BIOS KunLun BIOS V4.0 01/19/2021 pstate: 600003c5 (nZCv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : swsusp_save+0x280/0x538 lr : swsusp_save+0x280/0x538 sp : ffffffa034a3fa40 x29: ffffffa034a3fa40 x28: ffffff8000001000 x27: 0000000000000000 x26: ffffff8001400000 x25: ffffffc08113e248 x24: 0000000000000000 x23: 0000000000080000 x22: ffffffc08113e280 x21: 00000000000c69f2 x20: ffffff8000000000 x19: ffffffc081ae2500 x18: 0000000000000000 x17: 6666662074736420 x16: 3030303030303030 x15: 3038666666666666 x14: 0000000000000b69 x13: ffffff9f89088530 x12: 00000000ffffffea x11: 00000000ffff7fff x10: 00000000ffff7fff x9 : ffffffc08193f0d0 x8 : 00000000000bffe8 x7 : c0000000ffff7fff x6 : 0000000000000001 x5 : ffffffa0fff09dc8 x4 : 0000000000000000 x3 : 0000000000000027 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 000000000000004e Call trace: swsusp_save+0x280/0x538 swsusp_arch_suspend+0x148/0x190 hibernation_snapshot+0x240/0x39c hibernate+0xc4/0x378 state_store+0xf0/0x10c kobj_attr_store+0x14/0x24 The reason is swsusp_save() -> copy_data_pages() -> page_is_saveable() -> kernel_page_present() assuming that a page is always present when can_set_direct_map() is false (all of rodata_full, debug_pagealloc_enabled() and arm64_kfence_can_set_direct_map() false), irrespective of the MEMBLOCK_NOMAP ranges. Such MEMBLOCK_NOMAP regions should not be saved during hibernation. This problem was introduced by changes to the pfn_valid() logic in commit a7d9f306ba70 ("arm64: drop pfn_valid_within() and simplify pfn_valid()"). Similar to other architectures, drop the !can_set_direct_map() check in kernel_page_present() so that page_is_savable() skips such pages. [catalin.marinas@arm.com: rework commit message]
CVE-2024-26988 In the Linux kernel, the following vulnerability has been resolved: init/main.c: Fix potential static_command_line memory overflow We allocate memory of size 'xlen + strlen(boot_command_line) + 1' for static_command_line, but the strings copied into static_command_line are extra_command_line and command_line, rather than extra_command_line and boot_command_line. When strlen(command_line) > strlen(boot_command_line), static_command_line will overflow. This patch just recovers strlen(command_line) which was miss-consolidated with strlen(boot_command_line) in the commit f5c7310ac73e ("init/main: add checks for the return value of memblock_alloc*()")
CVE-2024-26987 In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: fix deadlock when hugetlb_optimize_vmemmap is enabled When I did hard offline test with hugetlb pages, below deadlock occurs: ====================================================== WARNING: possible circular locking dependency detected 6.8.0-11409-gf6cef5f8c37f #1 Not tainted ------------------------------------------------------ bash/46904 is trying to acquire lock: ffffffffabe68910 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_slow_dec+0x16/0x60 but task is already holding lock: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (pcp_batch_high_lock){+.+.}-{3:3}: __mutex_lock+0x6c/0x770 page_alloc_cpu_online+0x3c/0x70 cpuhp_invoke_callback+0x397/0x5f0 __cpuhp_invoke_callback_range+0x71/0xe0 _cpu_up+0xeb/0x210 cpu_up+0x91/0xe0 cpuhp_bringup_mask+0x49/0xb0 bringup_nonboot_cpus+0xb7/0xe0 smp_init+0x25/0xa0 kernel_init_freeable+0x15f/0x3e0 kernel_init+0x15/0x1b0 ret_from_fork+0x2f/0x50 ret_from_fork_asm+0x1a/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcp_batch_high_lock); lock(cpu_hotplug_lock); lock(pcp_batch_high_lock); rlock(cpu_hotplug_lock); *** DEADLOCK *** 5 locks held by bash/46904: #0: ffff98f6c3bb23f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0 #1: ffff98f6c328e488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0 #2: ffff98ef83b31890 (kn->active#113){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0 #3: ffffffffabf9db48 (mf_mutex){+.+.}-{3:3}, at: memory_failure+0x44/0xc70 #4: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 stack backtrace: CPU: 10 PID: 46904 Comm: bash Kdump: loaded Not tainted 6.8.0-11409-gf6cef5f8c37f #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 check_noncircular+0x129/0x140 __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 RIP: 0033:0x7fc862314887 Code: 10 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24 RSP: 002b:00007fff19311268 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007fc862314887 RDX: 000000000000000c RSI: 000056405645fe10 RDI: 0000000000000001 RBP: 000056405645fe10 R08: 00007fc8623d1460 R09: 000000007fffffff R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000000c R13: 00007fc86241b780 R14: 00007fc862417600 R15: 00007fc862416a00 In short, below scene breaks the ---truncated---
CVE-2024-26986 In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in create_process failure Fix memory leak due to a leaked mmget reference on an error handling code path that is triggered when attempting to create KFD processes while a GPU reset is in progress.
CVE-2024-26985 In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix bo leak in intel_fb_bo_framebuffer_init Add a unreference bo in the error path, to prevent leaking a bo ref. Return 0 on success to clarify the success path. (cherry picked from commit a2f3d731be3893e730417ae3190760fcaffdf549)
CVE-2024-26984 In the Linux kernel, the following vulnerability has been resolved: nouveau: fix instmem race condition around ptr stores Running a lot of VK CTS in parallel against nouveau, once every few hours you might see something like this crash. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 8000000114e6e067 P4D 8000000114e6e067 PUD 109046067 PMD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 7 PID: 53891 Comm: deqp-vk Not tainted 6.8.0-rc6+ #27 Hardware name: Gigabyte Technology Co., Ltd. Z390 I AORUS PRO WIFI/Z390 I AORUS PRO WIFI-CF, BIOS F8 11/05/2021 RIP: 0010:gp100_vmm_pgt_mem+0xe3/0x180 [nouveau] Code: c7 48 01 c8 49 89 45 58 85 d2 0f 84 95 00 00 00 41 0f b7 46 12 49 8b 7e 08 89 da 42 8d 2c f8 48 8b 47 08 41 83 c7 01 48 89 ee <48> 8b 40 08 ff d0 0f 1f 00 49 8b 7e 08 48 89 d9 48 8d 75 04 48 c1 RSP: 0000:ffffac20c5857838 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 00000000004d8001 RCX: 0000000000000001 RDX: 00000000004d8001 RSI: 00000000000006d8 RDI: ffffa07afe332180 RBP: 00000000000006d8 R08: ffffac20c5857ad0 R09: 0000000000ffff10 R10: 0000000000000001 R11: ffffa07af27e2de0 R12: 000000000000001c R13: ffffac20c5857ad0 R14: ffffa07a96fe9040 R15: 000000000000001c FS: 00007fe395eed7c0(0000) GS:ffffa07e2c980000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000011febe001 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ... ? gp100_vmm_pgt_mem+0xe3/0x180 [nouveau] ? gp100_vmm_pgt_mem+0x37/0x180 [nouveau] nvkm_vmm_iter+0x351/0xa20 [nouveau] ? __pfx_nvkm_vmm_ref_ptes+0x10/0x10 [nouveau] ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] ? __lock_acquire+0x3ed/0x2170 ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] nvkm_vmm_ptes_get_map+0xc2/0x100 [nouveau] ? __pfx_nvkm_vmm_ref_ptes+0x10/0x10 [nouveau] ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] nvkm_vmm_map_locked+0x224/0x3a0 [nouveau] Adding any sort of useful debug usually makes it go away, so I hand wrote the function in a line, and debugged the asm. Every so often pt->memory->ptrs is NULL. This ptrs ptr is set in the nv50_instobj_acquire called from nvkm_kmap. If Thread A and Thread B both get to nv50_instobj_acquire around the same time, and Thread A hits the refcount_set line, and in lockstep thread B succeeds at refcount_inc_not_zero, there is a chance the ptrs value won't have been stored since refcount_set is unordered. Force a memory barrier here, I picked smp_mb, since we want it on all CPUs and it's write followed by a read. v2: use paired smp_rmb/smp_wmb.
CVE-2024-26983 In the Linux kernel, the following vulnerability has been resolved: bootconfig: use memblock_free_late to free xbc memory to buddy On the time to free xbc memory in xbc_exit(), memblock may has handed over memory to buddy allocator. So it doesn't make sense to free memory back to memblock. memblock_free() called by xbc_exit() even causes UAF bugs on architectures with CONFIG_ARCH_KEEP_MEMBLOCK disabled like x86. Following KASAN logs shows this case. This patch fixes the xbc memory free problem by calling memblock_free() in early xbc init error rewind path and calling memblock_free_late() in xbc exit path to free memory to buddy allocator. [ 9.410890] ================================================================== [ 9.418962] BUG: KASAN: use-after-free in memblock_isolate_range+0x12d/0x260 [ 9.426850] Read of size 8 at addr ffff88845dd30000 by task swapper/0/1 [ 9.435901] CPU: 9 PID: 1 Comm: swapper/0 Tainted: G U 6.9.0-rc3-00208-g586b5dfb51b9 #5 [ 9.446403] Hardware name: Intel Corporation RPLP LP5 (CPU:RaptorLake)/RPLP LP5 (ID:13), BIOS IRPPN02.01.01.00.00.19.015.D-00000000 Dec 28 2023 [ 9.460789] Call Trace: [ 9.463518] <TASK> [ 9.465859] dump_stack_lvl+0x53/0x70 [ 9.469949] print_report+0xce/0x610 [ 9.473944] ? __virt_addr_valid+0xf5/0x1b0 [ 9.478619] ? memblock_isolate_range+0x12d/0x260 [ 9.483877] kasan_report+0xc6/0x100 [ 9.487870] ? memblock_isolate_range+0x12d/0x260 [ 9.493125] memblock_isolate_range+0x12d/0x260 [ 9.498187] memblock_phys_free+0xb4/0x160 [ 9.502762] ? __pfx_memblock_phys_free+0x10/0x10 [ 9.508021] ? mutex_unlock+0x7e/0xd0 [ 9.512111] ? __pfx_mutex_unlock+0x10/0x10 [ 9.516786] ? kernel_init_freeable+0x2d4/0x430 [ 9.521850] ? __pfx_kernel_init+0x10/0x10 [ 9.526426] xbc_exit+0x17/0x70 [ 9.529935] kernel_init+0x38/0x1e0 [ 9.533829] ? _raw_spin_unlock_irq+0xd/0x30 [ 9.538601] ret_from_fork+0x2c/0x50 [ 9.542596] ? __pfx_kernel_init+0x10/0x10 [ 9.547170] ret_from_fork_asm+0x1a/0x30 [ 9.551552] </TASK> [ 9.555649] The buggy address belongs to the physical page: [ 9.561875] page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x45dd30 [ 9.570821] flags: 0x200000000000000(node=0|zone=2) [ 9.576271] page_type: 0xffffffff() [ 9.580167] raw: 0200000000000000 ffffea0011774c48 ffffea0012ba1848 0000000000000000 [ 9.588823] raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000 [ 9.597476] page dumped because: kasan: bad access detected [ 9.605362] Memory state around the buggy address: [ 9.610714] ffff88845dd2ff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 9.618786] ffff88845dd2ff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 9.626857] >ffff88845dd30000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 9.634930] ^ [ 9.638534] ffff88845dd30080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 9.646605] ffff88845dd30100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 9.654675] ==================================================================
CVE-2024-26982 In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [phillip@squashfs.org.uk: whitespace fix] Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org.uk
CVE-2024-26981 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix OOB in nilfs_set_de_type The size of the nilfs_type_by_mode array in the fs/nilfs2/dir.c file is defined as "S_IFMT >> S_SHIFT", but the nilfs_set_de_type() function, which uses this array, specifies the index to read from the array in the same way as "(mode & S_IFMT) >> S_SHIFT". static void nilfs_set_de_type(struct nilfs_dir_entry *de, struct inode *inode) { umode_t mode = inode->i_mode; de->file_type = nilfs_type_by_mode[(mode & S_IFMT)>>S_SHIFT]; // oob } However, when the index is determined this way, an out-of-bounds (OOB) error occurs by referring to an index that is 1 larger than the array size when the condition "mode & S_IFMT == S_IFMT" is satisfied. Therefore, a patch to resize the nilfs_type_by_mode array should be applied to prevent OOB errors.
CVE-2024-26980 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-out-of-bounds in smb2_allocate_rsp_buf If ->ProtocolId is SMB2_TRANSFORM_PROTO_NUM, smb2 request size validation could be skipped. if request size is smaller than sizeof(struct smb2_query_info_req), slab-out-of-bounds read can happen in smb2_allocate_rsp_buf(). This patch allocate response buffer after decrypting transform request. smb3_decrypt_req() will validate transform request size and avoid slab-out-of-bound in smb2_allocate_rsp_buf().
CVE-2024-26979 In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix possible null pointer derefence with invalid contexts vmw_context_cotable can return either an error or a null pointer and its usage sometimes went unchecked. Subsequent code would then try to access either a null pointer or an error value. The invalid dereferences were only possible with malformed userspace apps which never properly initialized the rendering contexts. Check the results of vmw_context_cotable to fix the invalid derefs. Thanks: ziming zhang(@ezrak1e) from Ant Group Light-Year Security Lab who was the first person to discover it. Niels De Graef who reported it and helped to track down the poc.
CVE-2024-26978 In the Linux kernel, the following vulnerability has been resolved: serial: max310x: fix NULL pointer dereference in I2C instantiation When trying to instantiate a max14830 device from userspace: echo max14830 0x60 > /sys/bus/i2c/devices/i2c-2/new_device we get the following error: Unable to handle kernel NULL pointer dereference at virtual address... ... Call trace: max310x_i2c_probe+0x48/0x170 [max310x] i2c_device_probe+0x150/0x2a0 ... Add check for validity of devtype to prevent the error, and abort probe with a meaningful error message.
CVE-2024-26977 In the Linux kernel, the following vulnerability has been resolved: pci_iounmap(): Fix MMIO mapping leak The #ifdef ARCH_HAS_GENERIC_IOPORT_MAP accidentally also guards iounmap(), which means MMIO mappings are leaked. Move the guard so we call iounmap() for MMIO mappings.
CVE-2024-26976 In the Linux kernel, the following vulnerability has been resolved: KVM: Always flush async #PF workqueue when vCPU is being destroyed Always flush the per-vCPU async #PF workqueue when a vCPU is clearing its completion queue, e.g. when a VM and all its vCPUs is being destroyed. KVM must ensure that none of its workqueue callbacks is running when the last reference to the KVM _module_ is put. Gifting a reference to the associated VM prevents the workqueue callback from dereferencing freed vCPU/VM memory, but does not prevent the KVM module from being unloaded before the callback completes. Drop the misguided VM refcount gifting, as calling kvm_put_kvm() from async_pf_execute() if kvm_put_kvm() flushes the async #PF workqueue will result in deadlock. async_pf_execute() can't return until kvm_put_kvm() finishes, and kvm_put_kvm() can't return until async_pf_execute() finishes: WARNING: CPU: 8 PID: 251 at virt/kvm/kvm_main.c:1435 kvm_put_kvm+0x2d/0x320 [kvm] Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel kvm irqbypass CPU: 8 PID: 251 Comm: kworker/8:1 Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: events async_pf_execute [kvm] RIP: 0010:kvm_put_kvm+0x2d/0x320 [kvm] Call Trace: <TASK> async_pf_execute+0x198/0x260 [kvm] process_one_work+0x145/0x2d0 worker_thread+0x27e/0x3a0 kthread+0xba/0xe0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x11/0x20 </TASK> ---[ end trace 0000000000000000 ]--- INFO: task kworker/8:1:251 blocked for more than 120 seconds. Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/8:1 state:D stack:0 pid:251 ppid:2 flags:0x00004000 Workqueue: events async_pf_execute [kvm] Call Trace: <TASK> __schedule+0x33f/0xa40 schedule+0x53/0xc0 schedule_timeout+0x12a/0x140 __wait_for_common+0x8d/0x1d0 __flush_work.isra.0+0x19f/0x2c0 kvm_clear_async_pf_completion_queue+0x129/0x190 [kvm] kvm_arch_destroy_vm+0x78/0x1b0 [kvm] kvm_put_kvm+0x1c1/0x320 [kvm] async_pf_execute+0x198/0x260 [kvm] process_one_work+0x145/0x2d0 worker_thread+0x27e/0x3a0 kthread+0xba/0xe0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x11/0x20 </TASK> If kvm_clear_async_pf_completion_queue() actually flushes the workqueue, then there's no need to gift async_pf_execute() a reference because all invocations of async_pf_execute() will be forced to complete before the vCPU and its VM are destroyed/freed. And that in turn fixes the module unloading bug as __fput() won't do module_put() on the last vCPU reference until the vCPU has been freed, e.g. if closing the vCPU file also puts the last reference to the KVM module. Note that kvm_check_async_pf_completion() may also take the work item off the completion queue and so also needs to flush the work queue, as the work will not be seen by kvm_clear_async_pf_completion_queue(). Waiting on the workqueue could theoretically delay a vCPU due to waiting for the work to complete, but that's a very, very small chance, and likely a very small delay. kvm_arch_async_page_present_queued() unconditionally makes a new request, i.e. will effectively delay entering the guest, so the remaining work is really just: trace_kvm_async_pf_completed(addr, cr2_or_gpa); __kvm_vcpu_wake_up(vcpu); mmput(mm); and mmput() can't drop the last reference to the page tables if the vCPU is still alive, i.e. the vCPU won't get stuck tearing down page tables. Add a helper to do the flushing, specifically to deal with "wakeup all" work items, as they aren't actually work items, i.e. are never placed in a workqueue. Trying to flush a bogus workqueue entry rightly makes __flush_work() complain (kudos to whoever added that sanity check). Note, commit 5f6de5cbebee ("KVM: Prevent module exit until al ---truncated---
CVE-2024-26975 In the Linux kernel, the following vulnerability has been resolved: powercap: intel_rapl: Fix a NULL pointer dereference A NULL pointer dereference is triggered when probing the MMIO RAPL driver on platforms with CPU ID not listed in intel_rapl_common CPU model list. This is because the intel_rapl_common module still probes on such platforms even if 'defaults_msr' is not set after commit 1488ac990ac8 ("powercap: intel_rapl: Allow probing without CPUID match"). Thus the MMIO RAPL rp->priv->defaults is NULL when registering to RAPL framework. Fix the problem by adding sanity check to ensure rp->priv->rapl_defaults is always valid.
CVE-2024-26974 In the Linux kernel, the following vulnerability has been resolved: crypto: qat - resolve race condition during AER recovery During the PCI AER system's error recovery process, the kernel driver may encounter a race condition with freeing the reset_data structure's memory. If the device restart will take more than 10 seconds the function scheduling that restart will exit due to a timeout, and the reset_data structure will be freed. However, this data structure is used for completion notification after the restart is completed, which leads to a UAF bug. This results in a KFENCE bug notice. BUG: KFENCE: use-after-free read in adf_device_reset_worker+0x38/0xa0 [intel_qat] Use-after-free read at 0x00000000bc56fddf (in kfence-#142): adf_device_reset_worker+0x38/0xa0 [intel_qat] process_one_work+0x173/0x340 To resolve this race condition, the memory associated to the container of the work_struct is freed on the worker if the timeout expired, otherwise on the function that schedules the worker. The timeout detection can be done by checking if the caller is still waiting for completion or not by using completion_done() function.
CVE-2024-26973 In the Linux kernel, the following vulnerability has been resolved: fat: fix uninitialized field in nostale filehandles When fat_encode_fh_nostale() encodes file handle without a parent it stores only first 10 bytes of the file handle. However the length of the file handle must be a multiple of 4 so the file handle is actually 12 bytes long and the last two bytes remain uninitialized. This is not great at we potentially leak uninitialized information with the handle to userspace. Properly initialize the full handle length.
CVE-2024-26972 In the Linux kernel, the following vulnerability has been resolved: ubifs: ubifs_symlink: Fix memleak of inode->i_link in error path For error handling path in ubifs_symlink(), inode will be marked as bad first, then iput() is invoked. If inode->i_link is initialized by fscrypt_encrypt_symlink() in encryption scenario, inode->i_link won't be freed by callchain ubifs_free_inode -> fscrypt_free_inode in error handling path, because make_bad_inode() has changed 'inode->i_mode' as 'S_IFREG'. Following kmemleak is easy to be reproduced by injecting error in ubifs_jnl_update() when doing symlink in encryption scenario: unreferenced object 0xffff888103da3d98 (size 8): comm "ln", pid 1692, jiffies 4294914701 (age 12.045s) backtrace: kmemdup+0x32/0x70 __fscrypt_encrypt_symlink+0xed/0x1c0 ubifs_symlink+0x210/0x300 [ubifs] vfs_symlink+0x216/0x360 do_symlinkat+0x11a/0x190 do_syscall_64+0x3b/0xe0 There are two ways fixing it: 1. Remove make_bad_inode() in error handling path. We can do that because ubifs_evict_inode() will do same processes for good symlink inode and bad symlink inode, for inode->i_nlink checking is before is_bad_inode(). 2. Free inode->i_link before marking inode bad. Method 2 is picked, it has less influence, personally, I think.
CVE-2024-26971 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-ipq5018: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor().
CVE-2024-26970 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-ipq6018: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor(). Only compile tested.
CVE-2024-26969 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-ipq8074: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor(). Only compile tested.
CVE-2024-26968 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-ipq9574: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor(). Only compile tested.
CVE-2024-26967 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: camcc-sc8280xp: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor(). Only compile tested.
CVE-2024-26966 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: mmcc-apq8084: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor(). Only compile tested.
CVE-2024-26965 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: mmcc-msm8974: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor(). Only compile tested.
CVE-2024-26964 In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Add error handling in xhci_map_urb_for_dma Currently xhci_map_urb_for_dma() creates a temporary buffer and copies the SG list to the new linear buffer. But if the kzalloc_node() fails, then the following sg_pcopy_to_buffer() can lead to crash since it tries to memcpy to NULL pointer. So return -ENOMEM if kzalloc returns null pointer.
CVE-2024-26963 In the Linux kernel, the following vulnerability has been resolved: usb: dwc3-am62: fix module unload/reload behavior As runtime PM is enabled, the module can be runtime suspended when .remove() is called. Do a pm_runtime_get_sync() to make sure module is active before doing any register operations. Doing a pm_runtime_put_sync() should disable the refclk so no need to disable it again. Fixes the below warning at module removel. [ 39.705310] ------------[ cut here ]------------ [ 39.710004] clk:162:3 already disabled [ 39.713941] WARNING: CPU: 0 PID: 921 at drivers/clk/clk.c:1090 clk_core_disable+0xb0/0xb8 We called of_platform_populate() in .probe() so call the cleanup function of_platform_depopulate() in .remove(). Get rid of the now unnnecessary dwc3_ti_remove_core(). Without this, module re-load doesn't work properly.
CVE-2024-26962 In the Linux kernel, the following vulnerability has been resolved: dm-raid456, md/raid456: fix a deadlock for dm-raid456 while io concurrent with reshape For raid456, if reshape is still in progress, then IO across reshape position will wait for reshape to make progress. However, for dm-raid, in following cases reshape will never make progress hence IO will hang: 1) the array is read-only; 2) MD_RECOVERY_WAIT is set; 3) MD_RECOVERY_FROZEN is set; After commit c467e97f079f ("md/raid6: use valid sector values to determine if an I/O should wait on the reshape") fix the problem that IO across reshape position doesn't wait for reshape, the dm-raid test shell/lvconvert-raid-reshape.sh start to hang: [root@fedora ~]# cat /proc/979/stack [<0>] wait_woken+0x7d/0x90 [<0>] raid5_make_request+0x929/0x1d70 [raid456] [<0>] md_handle_request+0xc2/0x3b0 [md_mod] [<0>] raid_map+0x2c/0x50 [dm_raid] [<0>] __map_bio+0x251/0x380 [dm_mod] [<0>] dm_submit_bio+0x1f0/0x760 [dm_mod] [<0>] __submit_bio+0xc2/0x1c0 [<0>] submit_bio_noacct_nocheck+0x17f/0x450 [<0>] submit_bio_noacct+0x2bc/0x780 [<0>] submit_bio+0x70/0xc0 [<0>] mpage_readahead+0x169/0x1f0 [<0>] blkdev_readahead+0x18/0x30 [<0>] read_pages+0x7c/0x3b0 [<0>] page_cache_ra_unbounded+0x1ab/0x280 [<0>] force_page_cache_ra+0x9e/0x130 [<0>] page_cache_sync_ra+0x3b/0x110 [<0>] filemap_get_pages+0x143/0xa30 [<0>] filemap_read+0xdc/0x4b0 [<0>] blkdev_read_iter+0x75/0x200 [<0>] vfs_read+0x272/0x460 [<0>] ksys_read+0x7a/0x170 [<0>] __x64_sys_read+0x1c/0x30 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 This is because reshape can't make progress. For md/raid, the problem doesn't exist because register new sync_thread doesn't rely on the IO to be done any more: 1) If array is read-only, it can switch to read-write by ioctl/sysfs; 2) md/raid never set MD_RECOVERY_WAIT; 3) If MD_RECOVERY_FROZEN is set, mddev_suspend() doesn't hold 'reconfig_mutex', hence it can be cleared and reshape can continue by sysfs api 'sync_action'. However, I'm not sure yet how to avoid the problem in dm-raid yet. This patch on the one hand make sure raid_message() can't change sync_thread() through raid_message() after presuspend(), on the other hand detect the above 3 cases before wait for IO do be done in dm_suspend(), and let dm-raid requeue those IO.
CVE-2024-26961 In the Linux kernel, the following vulnerability has been resolved: mac802154: fix llsec key resources release in mac802154_llsec_key_del mac802154_llsec_key_del() can free resources of a key directly without following the RCU rules for waiting before the end of a grace period. This may lead to use-after-free in case llsec_lookup_key() is traversing the list of keys in parallel with a key deletion: refcount_t: addition on 0; use-after-free. WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0 Modules linked in: CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:refcount_warn_saturate+0x162/0x2a0 Call Trace: <TASK> llsec_lookup_key.isra.0+0x890/0x9e0 mac802154_llsec_encrypt+0x30c/0x9c0 ieee802154_subif_start_xmit+0x24/0x1e0 dev_hard_start_xmit+0x13e/0x690 sch_direct_xmit+0x2ae/0xbc0 __dev_queue_xmit+0x11dd/0x3c20 dgram_sendmsg+0x90b/0xd60 __sys_sendto+0x466/0x4c0 __x64_sys_sendto+0xe0/0x1c0 do_syscall_64+0x45/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Also, ieee802154_llsec_key_entry structures are not freed by mac802154_llsec_key_del(): unreferenced object 0xffff8880613b6980 (size 64): comm "iwpan", pid 2176, jiffies 4294761134 (age 60.475s) hex dump (first 32 bytes): 78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x......."....... 00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................ backtrace: [<ffffffff81dcfa62>] __kmem_cache_alloc_node+0x1e2/0x2d0 [<ffffffff81c43865>] kmalloc_trace+0x25/0xc0 [<ffffffff88968b09>] mac802154_llsec_key_add+0xac9/0xcf0 [<ffffffff8896e41a>] ieee802154_add_llsec_key+0x5a/0x80 [<ffffffff8892adc6>] nl802154_add_llsec_key+0x426/0x5b0 [<ffffffff86ff293e>] genl_family_rcv_msg_doit+0x1fe/0x2f0 [<ffffffff86ff46d1>] genl_rcv_msg+0x531/0x7d0 [<ffffffff86fee7a9>] netlink_rcv_skb+0x169/0x440 [<ffffffff86ff1d88>] genl_rcv+0x28/0x40 [<ffffffff86fec15c>] netlink_unicast+0x53c/0x820 [<ffffffff86fecd8b>] netlink_sendmsg+0x93b/0xe60 [<ffffffff86b91b35>] ____sys_sendmsg+0xac5/0xca0 [<ffffffff86b9c3dd>] ___sys_sendmsg+0x11d/0x1c0 [<ffffffff86b9c65a>] __sys_sendmsg+0xfa/0x1d0 [<ffffffff88eadbf5>] do_syscall_64+0x45/0xf0 [<ffffffff890000ea>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 Handle the proper resource release in the RCU callback function mac802154_llsec_key_del_rcu(). Note that if llsec_lookup_key() finds a key, it gets a refcount via llsec_key_get() and locally copies key id from key_entry (which is a list element). So it's safe to call llsec_key_put() and free the list entry after the RCU grace period elapses. Found by Linux Verification Center (linuxtesting.org).
CVE-2024-26960 In the Linux kernel, the following vulnerability has been resolved: mm: swap: fix race between free_swap_and_cache() and swapoff() There was previously a theoretical window where swapoff() could run and teardown a swap_info_struct while a call to free_swap_and_cache() was running in another thread. This could cause, amongst other bad possibilities, swap_page_trans_huge_swapped() (called by free_swap_and_cache()) to access the freed memory for swap_map. This is a theoretical problem and I haven't been able to provoke it from a test case. But there has been agreement based on code review that this is possible (see link below). Fix it by using get_swap_device()/put_swap_device(), which will stall swapoff(). There was an extra check in _swap_info_get() to confirm that the swap entry was not free. This isn't present in get_swap_device() because it doesn't make sense in general due to the race between getting the reference and swapoff. So I've added an equivalent check directly in free_swap_and_cache(). Details of how to provoke one possible issue (thanks to David Hildenbrand for deriving this): --8<----- __swap_entry_free() might be the last user and result in "count == SWAP_HAS_CACHE". swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0. So the question is: could someone reclaim the folio and turn si->inuse_pages==0, before we completed swap_page_trans_huge_swapped(). Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are still references by swap entries. Process 1 still references subpage 0 via swap entry. Process 2 still references subpage 1 via swap entry. Process 1 quits. Calls free_swap_and_cache(). -> count == SWAP_HAS_CACHE [then, preempted in the hypervisor etc.] Process 2 quits. Calls free_swap_and_cache(). -> count == SWAP_HAS_CACHE Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls __try_to_reclaim_swap(). __try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()-> put_swap_folio()->free_swap_slot()->swapcache_free_entries()-> swap_entry_free()->swap_range_free()-> ... WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); What stops swapoff to succeed after process 2 reclaimed the swap cache but before process1 finished its call to swap_page_trans_huge_swapped()? --8<-----
CVE-2024-26959 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btnxpuart: Fix btnxpuart_close Fix scheduling while atomic BUG in btnxpuart_close(), properly purge the transmit queue and free the receive skb. [ 10.973809] BUG: scheduling while atomic: kworker/u9:0/80/0x00000002 ... [ 10.980740] CPU: 3 PID: 80 Comm: kworker/u9:0 Not tainted 6.8.0-rc7-0.0.0-devel-00005-g61fdfceacf09 #1 [ 10.980751] Hardware name: Toradex Verdin AM62 WB on Dahlia Board (DT) [ 10.980760] Workqueue: hci0 hci_power_off [bluetooth] [ 10.981169] Call trace: ... [ 10.981363] uart_update_mctrl+0x58/0x78 [ 10.981373] uart_dtr_rts+0x104/0x114 [ 10.981381] tty_port_shutdown+0xd4/0xdc [ 10.981396] tty_port_close+0x40/0xbc [ 10.981407] uart_close+0x34/0x9c [ 10.981414] ttyport_close+0x50/0x94 [ 10.981430] serdev_device_close+0x40/0x50 [ 10.981442] btnxpuart_close+0x24/0x98 [btnxpuart] [ 10.981469] hci_dev_close_sync+0x2d8/0x718 [bluetooth] [ 10.981728] hci_dev_do_close+0x2c/0x70 [bluetooth] [ 10.981862] hci_power_off+0x20/0x64 [bluetooth]
CVE-2024-26958 In the Linux kernel, the following vulnerability has been resolved: nfs: fix UAF in direct writes In production we have been hitting the following warning consistently ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 17 PID: 1800359 at lib/refcount.c:28 refcount_warn_saturate+0x9c/0xe0 Workqueue: nfsiod nfs_direct_write_schedule_work [nfs] RIP: 0010:refcount_warn_saturate+0x9c/0xe0 PKRU: 55555554 Call Trace: <TASK> ? __warn+0x9f/0x130 ? refcount_warn_saturate+0x9c/0xe0 ? report_bug+0xcc/0x150 ? handle_bug+0x3d/0x70 ? exc_invalid_op+0x16/0x40 ? asm_exc_invalid_op+0x16/0x20 ? refcount_warn_saturate+0x9c/0xe0 nfs_direct_write_schedule_work+0x237/0x250 [nfs] process_one_work+0x12f/0x4a0 worker_thread+0x14e/0x3b0 ? ZSTD_getCParams_internal+0x220/0x220 kthread+0xdc/0x120 ? __btf_name_valid+0xa0/0xa0 ret_from_fork+0x1f/0x30 This is because we're completing the nfs_direct_request twice in a row. The source of this is when we have our commit requests to submit, we process them and send them off, and then in the completion path for the commit requests we have if (nfs_commit_end(cinfo.mds)) nfs_direct_write_complete(dreq); However since we're submitting asynchronous requests we sometimes have one that completes before we submit the next one, so we end up calling complete on the nfs_direct_request twice. The only other place we use nfs_generic_commit_list() is in __nfs_commit_inode, which wraps this call in a nfs_commit_begin(); nfs_commit_end(); Which is a common pattern for this style of completion handling, one that is also repeated in the direct code with get_dreq()/put_dreq() calls around where we process events as well as in the completion paths. Fix this by using the same pattern for the commit requests. Before with my 200 node rocksdb stress running this warning would pop every 10ish minutes. With my patch the stress test has been running for several hours without popping.
CVE-2024-26957 In the Linux kernel, the following vulnerability has been resolved: s390/zcrypt: fix reference counting on zcrypt card objects Tests with hot-plugging crytpo cards on KVM guests with debug kernel build revealed an use after free for the load field of the struct zcrypt_card. The reason was an incorrect reference handling of the zcrypt card object which could lead to a free of the zcrypt card object while it was still in use. This is an example of the slab message: kernel: 0x00000000885a7512-0x00000000885a7513 @offset=1298. First byte 0x68 instead of 0x6b kernel: Allocated in zcrypt_card_alloc+0x36/0x70 [zcrypt] age=18046 cpu=3 pid=43 kernel: kmalloc_trace+0x3f2/0x470 kernel: zcrypt_card_alloc+0x36/0x70 [zcrypt] kernel: zcrypt_cex4_card_probe+0x26/0x380 [zcrypt_cex4] kernel: ap_device_probe+0x15c/0x290 kernel: really_probe+0xd2/0x468 kernel: driver_probe_device+0x40/0xf0 kernel: __device_attach_driver+0xc0/0x140 kernel: bus_for_each_drv+0x8c/0xd0 kernel: __device_attach+0x114/0x198 kernel: bus_probe_device+0xb4/0xc8 kernel: device_add+0x4d2/0x6e0 kernel: ap_scan_adapter+0x3d0/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: Freed in zcrypt_card_put+0x54/0x80 [zcrypt] age=9024 cpu=3 pid=43 kernel: kfree+0x37e/0x418 kernel: zcrypt_card_put+0x54/0x80 [zcrypt] kernel: ap_device_remove+0x4c/0xe0 kernel: device_release_driver_internal+0x1c4/0x270 kernel: bus_remove_device+0x100/0x188 kernel: device_del+0x164/0x3c0 kernel: device_unregister+0x30/0x90 kernel: ap_scan_adapter+0xc8/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: kthread+0x150/0x168 kernel: __ret_from_fork+0x3c/0x58 kernel: ret_from_fork+0xa/0x30 kernel: Slab 0x00000372022169c0 objects=20 used=18 fp=0x00000000885a7c88 flags=0x3ffff00000000a00(workingset|slab|node=0|zone=1|lastcpupid=0x1ffff) kernel: Object 0x00000000885a74b8 @offset=1208 fp=0x00000000885a7c88 kernel: Redzone 00000000885a74b0: bb bb bb bb bb bb bb bb ........ kernel: Object 00000000885a74b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74d8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74e8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74f8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a7508: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 68 4b 6b 6b 6b a5 kkkkkkkkkkhKkkk. kernel: Redzone 00000000885a7518: bb bb bb bb bb bb bb bb ........ kernel: Padding 00000000885a756c: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZ kernel: CPU: 0 PID: 387 Comm: systemd-udevd Not tainted 6.8.0-HF #2 kernel: Hardware name: IBM 3931 A01 704 (KVM/Linux) kernel: Call Trace: kernel: [<00000000ca5ab5b8>] dump_stack_lvl+0x90/0x120 kernel: [<00000000c99d78bc>] check_bytes_and_report+0x114/0x140 kernel: [<00000000c99d53cc>] check_object+0x334/0x3f8 kernel: [<00000000c99d820c>] alloc_debug_processing+0xc4/0x1f8 kernel: [<00000000c99d852e>] get_partial_node.part.0+0x1ee/0x3e0 kernel: [<00000000c99d94ec>] ___slab_alloc+0xaf4/0x13c8 kernel: [<00000000c99d9e38>] __slab_alloc.constprop.0+0x78/0xb8 kernel: [<00000000c99dc8dc>] __kmalloc+0x434/0x590 kernel: [<00000000c9b4c0ce>] ext4_htree_store_dirent+0x4e/0x1c0 kernel: [<00000000c9b908a2>] htree_dirblock_to_tree+0x17a/0x3f0 kernel: ---truncated---
CVE-2024-26956 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix failure to detect DAT corruption in btree and direct mappings Patch series "nilfs2: fix kernel bug at submit_bh_wbc()". This resolves a kernel BUG reported by syzbot. Since there are two flaws involved, I've made each one a separate patch. The first patch alone resolves the syzbot-reported bug, but I think both fixes should be sent to stable, so I've tagged them as such. This patch (of 2): Syzbot has reported a kernel bug in submit_bh_wbc() when writing file data to a nilfs2 file system whose metadata is corrupted. There are two flaws involved in this issue. The first flaw is that when nilfs_get_block() locates a data block using btree or direct mapping, if the disk address translation routine nilfs_dat_translate() fails with internal code -ENOENT due to DAT metadata corruption, it can be passed back to nilfs_get_block(). This causes nilfs_get_block() to misidentify an existing block as non-existent, causing both data block lookup and insertion to fail inconsistently. The second flaw is that nilfs_get_block() returns a successful status in this inconsistent state. This causes the caller __block_write_begin_int() or others to request a read even though the buffer is not mapped, resulting in a BUG_ON check for the BH_Mapped flag in submit_bh_wbc() failing. This fixes the first issue by changing the return value to code -EINVAL when a conversion using DAT fails with code -ENOENT, avoiding the conflicting condition that leads to the kernel bug described above. Here, code -EINVAL indicates that metadata corruption was detected during the block lookup, which will be properly handled as a file system error and converted to -EIO when passing through the nilfs2 bmap layer.
CVE-2024-26955 In the Linux kernel, the following vulnerability has been resolved: nilfs2: prevent kernel bug at submit_bh_wbc() Fix a bug where nilfs_get_block() returns a successful status when searching and inserting the specified block both fail inconsistently. If this inconsistent behavior is not due to a previously fixed bug, then an unexpected race is occurring, so return a temporary error -EAGAIN instead. This prevents callers such as __block_write_begin_int() from requesting a read into a buffer that is not mapped, which would cause the BUG_ON check for the BH_Mapped flag in submit_bh_wbc() to fail.
CVE-2024-26954 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-out-of-bounds in smb_strndup_from_utf16() If ->NameOffset of smb2_create_req is smaller than Buffer offset of smb2_create_req, slab-out-of-bounds read can happen from smb2_open. This patch set the minimum value of the name offset to the buffer offset to validate name length of smb2_create_req().
CVE-2024-26953 In the Linux kernel, the following vulnerability has been resolved: net: esp: fix bad handling of pages from page_pool When the skb is reorganized during esp_output (!esp->inline), the pages coming from the original skb fragments are supposed to be released back to the system through put_page. But if the skb fragment pages are originating from a page_pool, calling put_page on them will trigger a page_pool leak which will eventually result in a crash. This leak can be easily observed when using CONFIG_DEBUG_VM and doing ipsec + gre (non offloaded) forwarding: BUG: Bad page state in process ksoftirqd/16 pfn:1451b6 page:00000000de2b8d32 refcount:0 mapcount:0 mapping:0000000000000000 index:0x1451b6000 pfn:0x1451b6 flags: 0x200000000000000(node=0|zone=2) page_type: 0xffffffff() raw: 0200000000000000 dead000000000040 ffff88810d23c000 0000000000000000 raw: 00000001451b6000 0000000000000001 00000000ffffffff 0000000000000000 page dumped because: page_pool leak Modules linked in: ip_gre gre mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat nf_nat xt_addrtype br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core overlay zram zsmalloc fuse [last unloaded: mlx5_core] CPU: 16 PID: 96 Comm: ksoftirqd/16 Not tainted 6.8.0-rc4+ #22 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x36/0x50 bad_page+0x70/0xf0 free_unref_page_prepare+0x27a/0x460 free_unref_page+0x38/0x120 esp_ssg_unref.isra.0+0x15f/0x200 esp_output_tail+0x66d/0x780 esp_xmit+0x2c5/0x360 validate_xmit_xfrm+0x313/0x370 ? validate_xmit_skb+0x1d/0x330 validate_xmit_skb_list+0x4c/0x70 sch_direct_xmit+0x23e/0x350 __dev_queue_xmit+0x337/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x25e/0x580 iptunnel_xmit+0x19b/0x240 ip_tunnel_xmit+0x5fb/0xb60 ipgre_xmit+0x14d/0x280 [ip_gre] dev_hard_start_xmit+0xc3/0x1c0 __dev_queue_xmit+0x208/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x1ca/0x580 ip_sublist_rcv_finish+0x32/0x40 ip_sublist_rcv+0x1b2/0x1f0 ? ip_rcv_finish_core.constprop.0+0x460/0x460 ip_list_rcv+0x103/0x130 __netif_receive_skb_list_core+0x181/0x1e0 netif_receive_skb_list_internal+0x1b3/0x2c0 napi_gro_receive+0xc8/0x200 gro_cell_poll+0x52/0x90 __napi_poll+0x25/0x1a0 net_rx_action+0x28e/0x300 __do_softirq+0xc3/0x276 ? sort_range+0x20/0x20 run_ksoftirqd+0x1e/0x30 smpboot_thread_fn+0xa6/0x130 kthread+0xcd/0x100 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x31/0x50 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork_asm+0x11/0x20 </TASK> The suggested fix is to introduce a new wrapper (skb_page_unref) that covers page refcounting for page_pool pages as well.
CVE-2024-26952 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix potencial out-of-bounds when buffer offset is invalid I found potencial out-of-bounds when buffer offset fields of a few requests is invalid. This patch set the minimum value of buffer offset field to ->Buffer offset to validate buffer length.
CVE-2024-26951 In the Linux kernel, the following vulnerability has been resolved: wireguard: netlink: check for dangling peer via is_dead instead of empty list If all peers are removed via wg_peer_remove_all(), rather than setting peer_list to empty, the peer is added to a temporary list with a head on the stack of wg_peer_remove_all(). If a netlink dump is resumed and the cursored peer is one that has been removed via wg_peer_remove_all(), it will iterate from that peer and then attempt to dump freed peers. Fix this by instead checking peer->is_dead, which was explictly created for this purpose. Also move up the device_update_lock lockdep assertion, since reading is_dead relies on that. It can be reproduced by a small script like: echo "Setting config..." ip link add dev wg0 type wireguard wg setconf wg0 /big-config ( while true; do echo "Showing config..." wg showconf wg0 > /dev/null done ) & sleep 4 wg setconf wg0 <(printf "[Peer]\nPublicKey=$(wg genkey)\n") Resulting in: BUG: KASAN: slab-use-after-free in __lock_acquire+0x182a/0x1b20 Read of size 8 at addr ffff88811956ec70 by task wg/59 CPU: 2 PID: 59 Comm: wg Not tainted 6.8.0-rc2-debug+ #5 Call Trace: <TASK> dump_stack_lvl+0x47/0x70 print_address_description.constprop.0+0x2c/0x380 print_report+0xab/0x250 kasan_report+0xba/0xf0 __lock_acquire+0x182a/0x1b20 lock_acquire+0x191/0x4b0 down_read+0x80/0x440 get_peer+0x140/0xcb0 wg_get_device_dump+0x471/0x1130
CVE-2024-26950 In the Linux kernel, the following vulnerability has been resolved: wireguard: netlink: access device through ctx instead of peer The previous commit fixed a bug that led to a NULL peer->device being dereferenced. It's actually easier and faster performance-wise to instead get the device from ctx->wg. This semantically makes more sense too, since ctx->wg->peer_allowedips.seq is compared with ctx->allowedips_seq, basing them both in ctx. This also acts as a defence in depth provision against freed peers.
CVE-2024-26949 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/pm: Fix NULL pointer dereference when get power limit Because powerplay_table initialization is skipped under sriov case, We check and set default lower and upper OD value if powerplay_table is NULL.
CVE-2024-26948 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add a dc_state NULL check in dc_state_release [How] Check wheather state is NULL before releasing it.
CVE-2024-26947 In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is&#65306;0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/Zbtdue57RO0QScJM@linux.ibm.com/
CVE-2024-26946 In the Linux kernel, the following vulnerability has been resolved: kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address Read from an unsafe address with copy_from_kernel_nofault() in arch_adjust_kprobe_addr() because this function is used before checking the address is in text or not. Syzcaller bot found a bug and reported the case if user specifies inaccessible data area, arch_adjust_kprobe_addr() will cause a kernel panic. [ mingo: Clarified the comment. ]
CVE-2024-26945 In the Linux kernel, the following vulnerability has been resolved: crypto: iaa - Fix nr_cpus < nr_iaa case If nr_cpus < nr_iaa, the calculated cpus_per_iaa will be 0, which causes a divide-by-0 in rebalance_wq_table(). Make sure cpus_per_iaa is 1 in that case, and also in the nr_iaa == 0 case, even though cpus_per_iaa is never used if nr_iaa == 0, for paranoia.
CVE-2024-26944 In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free in do_zone_finish() Shinichiro reported the following use-after-free triggered by the device replace operation in fstests btrfs/070. BTRFS info (device nullb1): scrub: finished on devid 1 with status: 0 ================================================================== BUG: KASAN: slab-use-after-free in do_zone_finish+0x91a/0xb90 [btrfs] Read of size 8 at addr ffff8881543c8060 by task btrfs-cleaner/3494007 CPU: 0 PID: 3494007 Comm: btrfs-cleaner Tainted: G W 6.8.0-rc5-kts #1 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Call Trace: <TASK> dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0x200/0x3e0 kasan_report+0xd8/0x110 ? do_zone_finish+0x91a/0xb90 [btrfs] ? do_zone_finish+0x91a/0xb90 [btrfs] do_zone_finish+0x91a/0xb90 [btrfs] btrfs_delete_unused_bgs+0x5e1/0x1750 [btrfs] ? __pfx_btrfs_delete_unused_bgs+0x10/0x10 [btrfs] ? btrfs_put_root+0x2d/0x220 [btrfs] ? btrfs_clean_one_deleted_snapshot+0x299/0x430 [btrfs] cleaner_kthread+0x21e/0x380 [btrfs] ? __pfx_cleaner_kthread+0x10/0x10 [btrfs] kthread+0x2e3/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> Allocated by task 3493983: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 btrfs_alloc_device+0xb3/0x4e0 [btrfs] device_list_add.constprop.0+0x993/0x1630 [btrfs] btrfs_scan_one_device+0x219/0x3d0 [btrfs] btrfs_control_ioctl+0x26e/0x310 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Freed by task 3494056: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3f/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x32/0x70 kfree+0x11b/0x320 btrfs_rm_dev_replace_free_srcdev+0xca/0x280 [btrfs] btrfs_dev_replace_finishing+0xd7e/0x14f0 [btrfs] btrfs_dev_replace_by_ioctl+0x1286/0x25a0 [btrfs] btrfs_ioctl+0xb27/0x57d0 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 The buggy address belongs to the object at ffff8881543c8000 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 96 bytes inside of freed 1024-byte region [ffff8881543c8000, ffff8881543c8400) The buggy address belongs to the physical page: page:00000000fe2c1285 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1543c8 head:00000000fe2c1285 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x17ffffc0000840(slab|head|node=0|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0017ffffc0000840 ffff888100042dc0 ffffea0019e8f200 dead000000000002 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881543c7f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8881543c7f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8881543c8000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8881543c8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8881543c8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb This UAF happens because we're accessing stale zone information of a already removed btrfs_device in do_zone_finish(). The sequence of events is as follows: btrfs_dev_replace_start btrfs_scrub_dev btrfs_dev_replace_finishing btrfs_dev_replace_update_device_in_mapping_tree <-- devices replaced btrfs_rm_dev_replace_free_srcdev btrfs_free_device <-- device freed cleaner_kthread btrfs_delete_unused_bgs btrfs_zone_finish do_zone_finish <-- refers the freed device The reason for this is that we're using a ---truncated---
CVE-2024-26943 In the Linux kernel, the following vulnerability has been resolved: nouveau/dmem: handle kcalloc() allocation failure The kcalloc() in nouveau_dmem_evict_chunk() will return null if the physical memory has run out. As a result, if we dereference src_pfns, dst_pfns or dma_addrs, the null pointer dereference bugs will happen. Moreover, the GPU is going away. If the kcalloc() fails, we could not evict all pages mapping a chunk. So this patch adds a __GFP_NOFAIL flag in kcalloc(). Finally, as there is no need to have physically contiguous memory, this patch switches kcalloc() to kvcalloc() in order to avoid failing allocations.
CVE-2024-26942 In the Linux kernel, the following vulnerability has been resolved: net: phy: qcom: at803x: fix kernel panic with at8031_probe On reworking and splitting the at803x driver, in splitting function of at803x PHYs it was added a NULL dereference bug where priv is referenced before it's actually allocated and then is tried to write to for the is_1000basex and is_fiber variables in the case of at8031, writing on the wrong address. Fix this by correctly setting priv local variable only after at803x_probe is called and actually allocates priv in the phydev struct.
CVE-2024-26941 In the Linux kernel, the following vulnerability has been resolved: drm/dp: Fix divide-by-zero regression on DP MST unplug with nouveau Fix a regression when using nouveau and unplugging a StarTech MSTDP122DP DisplayPort 1.2 MST hub (the same regression does not appear when using a Cable Matters DisplayPort 1.4 MST hub). Trace: divide error: 0000 [#1] PREEMPT SMP PTI CPU: 7 PID: 2962 Comm: Xorg Not tainted 6.8.0-rc3+ #744 Hardware name: Razer Blade/DANA_MB, BIOS 01.01 08/31/2018 RIP: 0010:drm_dp_bw_overhead+0xb4/0x110 [drm_display_helper] Code: c6 b8 01 00 00 00 75 61 01 c6 41 0f af f3 41 0f af f1 c1 e1 04 48 63 c7 31 d2 89 ff 48 8b 5d f8 c9 48 0f af f1 48 8d 44 06 ff <48> f7 f7 31 d2 31 c9 31 f6 31 ff 45 31 c0 45 31 c9 45 31 d2 45 31 RSP: 0018:ffffb2c5c211fa30 EFLAGS: 00010206 RAX: ffffffffffffffff RBX: 0000000000000000 RCX: 0000000000f59b00 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffb2c5c211fa48 R08: 0000000000000001 R09: 0000000000000020 R10: 0000000000000004 R11: 0000000000000000 R12: 0000000000023b4a R13: ffff91d37d165800 R14: ffff91d36fac6d80 R15: ffff91d34a764010 FS: 00007f4a1ca3fa80(0000) GS:ffff91d6edbc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000559491d49000 CR3: 000000011d180002 CR4: 00000000003706f0 Call Trace: <TASK> ? show_regs+0x6d/0x80 ? die+0x37/0xa0 ? do_trap+0xd4/0xf0 ? do_error_trap+0x71/0xb0 ? drm_dp_bw_overhead+0xb4/0x110 [drm_display_helper] ? exc_divide_error+0x3a/0x70 ? drm_dp_bw_overhead+0xb4/0x110 [drm_display_helper] ? asm_exc_divide_error+0x1b/0x20 ? drm_dp_bw_overhead+0xb4/0x110 [drm_display_helper] ? drm_dp_calc_pbn_mode+0x2e/0x70 [drm_display_helper] nv50_msto_atomic_check+0xda/0x120 [nouveau] drm_atomic_helper_check_modeset+0xa87/0xdf0 [drm_kms_helper] drm_atomic_helper_check+0x19/0xa0 [drm_kms_helper] nv50_disp_atomic_check+0x13f/0x2f0 [nouveau] drm_atomic_check_only+0x668/0xb20 [drm] ? drm_connector_list_iter_next+0x86/0xc0 [drm] drm_atomic_commit+0x58/0xd0 [drm] ? __pfx___drm_printfn_info+0x10/0x10 [drm] drm_atomic_connector_commit_dpms+0xd7/0x100 [drm] drm_mode_obj_set_property_ioctl+0x1c5/0x450 [drm] ? __pfx_drm_connector_property_set_ioctl+0x10/0x10 [drm] drm_connector_property_set_ioctl+0x3b/0x60 [drm] drm_ioctl_kernel+0xb9/0x120 [drm] drm_ioctl+0x2d0/0x550 [drm] ? __pfx_drm_connector_property_set_ioctl+0x10/0x10 [drm] nouveau_drm_ioctl+0x61/0xc0 [nouveau] __x64_sys_ioctl+0xa0/0xf0 do_syscall_64+0x76/0x140 ? do_syscall_64+0x85/0x140 ? do_syscall_64+0x85/0x140 entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7f4a1cd1a94f Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <41> 89 c0 3d 00 f0 ff ff 77 1f 48 8b 44 24 18 64 48 2b 04 25 28 00 RSP: 002b:00007ffd2f1df520 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007ffd2f1df5b0 RCX: 00007f4a1cd1a94f RDX: 00007ffd2f1df5b0 RSI: 00000000c01064ab RDI: 000000000000000f RBP: 00000000c01064ab R08: 000056347932deb8 R09: 000056347a7d99c0 R10: 0000000000000000 R11: 0000000000000246 R12: 000056347938a220 R13: 000000000000000f R14: 0000563479d9f3f0 R15: 0000000000000000 </TASK> Modules linked in: rfcomm xt_conntrack nft_chain_nat xt_MASQUERADE nf_nat nf_conntrack_netlink nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xfrm_user xfrm_algo xt_addrtype nft_compat nf_tables nfnetlink br_netfilter bridge stp llc ccm cmac algif_hash overlay algif_skcipher af_alg bnep binfmt_misc snd_sof_pci_intel_cnl snd_sof_intel_hda_common snd_soc_hdac_hda snd_sof_pci snd_sof_xtensa_dsp snd_sof_intel_hda snd_sof snd_sof_utils snd_soc_acpi_intel_match snd_soc_acpi snd_soc_core snd_compress snd_sof_intel_hda_mlink snd_hda_ext_core iwlmvm intel_rapl_msr intel_rapl_common intel_tcc_cooling x86_pkg_temp_thermal intel_powerclamp mac80211 coretemp kvm_intel snd_hda_codec_hdmi kvm snd_hda_ ---truncated---
CVE-2024-26940 In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Create debugfs ttm_resource_manager entry only if needed The driver creates /sys/kernel/debug/dri/0/mob_ttm even when the corresponding ttm_resource_manager is not allocated. This leads to a crash when trying to read from this file. Add a check to create mob_ttm, system_mob_ttm, and gmr_ttm debug file only when the corresponding ttm_resource_manager is allocated. crash> bt PID: 3133409 TASK: ffff8fe4834a5000 CPU: 3 COMMAND: "grep" #0 [ffffb954506b3b20] machine_kexec at ffffffffb2a6bec3 #1 [ffffb954506b3b78] __crash_kexec at ffffffffb2bb598a #2 [ffffb954506b3c38] crash_kexec at ffffffffb2bb68c1 #3 [ffffb954506b3c50] oops_end at ffffffffb2a2a9b1 #4 [ffffb954506b3c70] no_context at ffffffffb2a7e913 #5 [ffffb954506b3cc8] __bad_area_nosemaphore at ffffffffb2a7ec8c #6 [ffffb954506b3d10] do_page_fault at ffffffffb2a7f887 #7 [ffffb954506b3d40] page_fault at ffffffffb360116e [exception RIP: ttm_resource_manager_debug+0x11] RIP: ffffffffc04afd11 RSP: ffffb954506b3df0 RFLAGS: 00010246 RAX: ffff8fe41a6d1200 RBX: 0000000000000000 RCX: 0000000000000940 RDX: 0000000000000000 RSI: ffffffffc04b4338 RDI: 0000000000000000 RBP: ffffb954506b3e08 R8: ffff8fee3ffad000 R9: 0000000000000000 R10: ffff8fe41a76a000 R11: 0000000000000001 R12: 00000000ffffffff R13: 0000000000000001 R14: ffff8fe5bb6f3900 R15: ffff8fe41a6d1200 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #8 [ffffb954506b3e00] ttm_resource_manager_show at ffffffffc04afde7 [ttm] #9 [ffffb954506b3e30] seq_read at ffffffffb2d8f9f3 RIP: 00007f4c4eda8985 RSP: 00007ffdbba9e9f8 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 000000000037e000 RCX: 00007f4c4eda8985 RDX: 000000000037e000 RSI: 00007f4c41573000 RDI: 0000000000000003 RBP: 000000000037e000 R8: 0000000000000000 R9: 000000000037fe30 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f4c41573000 R13: 0000000000000003 R14: 00007f4c41572010 R15: 0000000000000003 ORIG_RAX: 0000000000000000 CS: 0033 SS: 002b
CVE-2024-26939 In the Linux kernel, the following vulnerability has been resolved: drm/i915/vma: Fix UAF on destroy against retire race Object debugging tools were sporadically reporting illegal attempts to free a still active i915 VMA object when parking a GT believed to be idle. [161.359441] ODEBUG: free active (active state 0) object: ffff88811643b958 object type: i915_active hint: __i915_vma_active+0x0/0x50 [i915] [161.360082] WARNING: CPU: 5 PID: 276 at lib/debugobjects.c:514 debug_print_object+0x80/0xb0 ... [161.360304] CPU: 5 PID: 276 Comm: kworker/5:2 Not tainted 6.5.0-rc1-CI_DRM_13375-g003f860e5577+ #1 [161.360314] Hardware name: Intel Corporation Rocket Lake Client Platform/RocketLake S UDIMM 6L RVP, BIOS RKLSFWI1.R00.3173.A03.2204210138 04/21/2022 [161.360322] Workqueue: i915-unordered __intel_wakeref_put_work [i915] [161.360592] RIP: 0010:debug_print_object+0x80/0xb0 ... [161.361347] debug_object_free+0xeb/0x110 [161.361362] i915_active_fini+0x14/0x130 [i915] [161.361866] release_references+0xfe/0x1f0 [i915] [161.362543] i915_vma_parked+0x1db/0x380 [i915] [161.363129] __gt_park+0x121/0x230 [i915] [161.363515] ____intel_wakeref_put_last+0x1f/0x70 [i915] That has been tracked down to be happening when another thread is deactivating the VMA inside __active_retire() helper, after the VMA's active counter has been already decremented to 0, but before deactivation of the VMA's object is reported to the object debugging tool. We could prevent from that race by serializing i915_active_fini() with __active_retire() via ref->tree_lock, but that wouldn't stop the VMA from being used, e.g. from __i915_vma_retire() called at the end of __active_retire(), after that VMA has been already freed by a concurrent i915_vma_destroy() on return from the i915_active_fini(). Then, we should rather fix the issue at the VMA level, not in i915_active. Since __i915_vma_parked() is called from __gt_park() on last put of the GT's wakeref, the issue could be addressed by holding the GT wakeref long enough for __active_retire() to complete before that wakeref is released and the GT parked. I believe the issue was introduced by commit d93939730347 ("drm/i915: Remove the vma refcount") which moved a call to i915_active_fini() from a dropped i915_vma_release(), called on last put of the removed VMA kref, to i915_vma_parked() processing path called on last put of a GT wakeref. However, its visibility to the object debugging tool was suppressed by a bug in i915_active that was fixed two weeks later with commit e92eb246feb9 ("drm/i915/active: Fix missing debug object activation"). A VMA associated with a request doesn't acquire a GT wakeref by itself. Instead, it depends on a wakeref held directly by the request's active intel_context for a GT associated with its VM, and indirectly on that intel_context's engine wakeref if the engine belongs to the same GT as the VMA's VM. Those wakerefs are released asynchronously to VMA deactivation. Fix the issue by getting a wakeref for the VMA's GT when activating it, and putting that wakeref only after the VMA is deactivated. However, exclude global GTT from that processing path, otherwise the GPU never goes idle. Since __i915_vma_retire() may be called from atomic contexts, use async variant of wakeref put. Also, to avoid circular locking dependency, take care of acquiring the wakeref before VM mutex when both are needed. v7: Add inline comments with justifications for: - using untracked variants of intel_gt_pm_get/put() (Nirmoy), - using async variant of _put(), - not getting the wakeref in case of a global GTT, - always getting the first wakeref outside vm->mutex. v6: Since __i915_vma_active/retire() callbacks are not serialized, storing a wakeref tracking handle inside struct i915_vma is not safe, and there is no other good place for that. Use untracked variants of intel_gt_pm_get/put_async(). v5: Replace "tile" with "GT" across commit description (Rodrigo), - ---truncated---
CVE-2024-26938 In the Linux kernel, the following vulnerability has been resolved: drm/i915/bios: Tolerate devdata==NULL in intel_bios_encoder_supports_dp_dual_mode() If we have no VBT, or the VBT didn't declare the encoder in question, we won't have the 'devdata' for the encoder. Instead of oopsing just bail early. We won't be able to tell whether the port is DP++ or not, but so be it. (cherry picked from commit 26410896206342c8a80d2b027923e9ee7d33b733)
CVE-2024-26937 In the Linux kernel, the following vulnerability has been resolved: drm/i915/gt: Reset queue_priority_hint on parking Originally, with strict in order execution, we could complete execution only when the queue was empty. Preempt-to-busy allows replacement of an active request that may complete before the preemption is processed by HW. If that happens, the request is retired from the queue, but the queue_priority_hint remains set, preventing direct submission until after the next CS interrupt is processed. This preempt-to-busy race can be triggered by the heartbeat, which will also act as the power-management barrier and upon completion allow us to idle the HW. We may process the completion of the heartbeat, and begin parking the engine before the CS event that restores the queue_priority_hint, causing us to fail the assertion that it is MIN. <3>[ 166.210729] __engine_park:283 GEM_BUG_ON(engine->sched_engine->queue_priority_hint != (-((int)(~0U >> 1)) - 1)) <0>[ 166.210781] Dumping ftrace buffer: <0>[ 166.210795] --------------------------------- ... <0>[ 167.302811] drm_fdin-1097 2..s1. 165741070us : trace_ports: 0000:00:02.0 rcs0: promote { ccid:20 1217:2 prio 0 } <0>[ 167.302861] drm_fdin-1097 2d.s2. 165741072us : execlists_submission_tasklet: 0000:00:02.0 rcs0: preempting last=1217:2, prio=0, hint=2147483646 <0>[ 167.302928] drm_fdin-1097 2d.s2. 165741072us : __i915_request_unsubmit: 0000:00:02.0 rcs0: fence 1217:2, current 0 <0>[ 167.302992] drm_fdin-1097 2d.s2. 165741073us : __i915_request_submit: 0000:00:02.0 rcs0: fence 3:4660, current 4659 <0>[ 167.303044] drm_fdin-1097 2d.s1. 165741076us : execlists_submission_tasklet: 0000:00:02.0 rcs0: context:3 schedule-in, ccid:40 <0>[ 167.303095] drm_fdin-1097 2d.s1. 165741077us : trace_ports: 0000:00:02.0 rcs0: submit { ccid:40 3:4660* prio 2147483646 } <0>[ 167.303159] kworker/-89 11..... 165741139us : i915_request_retire.part.0: 0000:00:02.0 rcs0: fence c90:2, current 2 <0>[ 167.303208] kworker/-89 11..... 165741148us : __intel_context_do_unpin: 0000:00:02.0 rcs0: context:c90 unpin <0>[ 167.303272] kworker/-89 11..... 165741159us : i915_request_retire.part.0: 0000:00:02.0 rcs0: fence 1217:2, current 2 <0>[ 167.303321] kworker/-89 11..... 165741166us : __intel_context_do_unpin: 0000:00:02.0 rcs0: context:1217 unpin <0>[ 167.303384] kworker/-89 11..... 165741170us : i915_request_retire.part.0: 0000:00:02.0 rcs0: fence 3:4660, current 4660 <0>[ 167.303434] kworker/-89 11d..1. 165741172us : __intel_context_retire: 0000:00:02.0 rcs0: context:1216 retire runtime: { total:56028ns, avg:56028ns } <0>[ 167.303484] kworker/-89 11..... 165741198us : __engine_park: 0000:00:02.0 rcs0: parked <0>[ 167.303534] <idle>-0 5d.H3. 165741207us : execlists_irq_handler: 0000:00:02.0 rcs0: semaphore yield: 00000040 <0>[ 167.303583] kworker/-89 11..... 165741397us : __intel_context_retire: 0000:00:02.0 rcs0: context:1217 retire runtime: { total:325575ns, avg:0ns } <0>[ 167.303756] kworker/-89 11..... 165741777us : __intel_context_retire: 0000:00:02.0 rcs0: context:c90 retire runtime: { total:0ns, avg:0ns } <0>[ 167.303806] kworker/-89 11..... 165742017us : __engine_park: __engine_park:283 GEM_BUG_ON(engine->sched_engine->queue_priority_hint != (-((int)(~0U >> 1)) - 1)) <0>[ 167.303811] --------------------------------- <4>[ 167.304722] ------------[ cut here ]------------ <2>[ 167.304725] kernel BUG at drivers/gpu/drm/i915/gt/intel_engine_pm.c:283! <4>[ 167.304731] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI <4>[ 167.304734] CPU: 11 PID: 89 Comm: kworker/11:1 Tainted: G W 6.8.0-rc2-CI_DRM_14193-gc655e0fd2804+ #1 <4>[ 167.304736] Hardware name: Intel Corporation Rocket Lake Client Platform/RocketLake S UDIMM 6L RVP, BIOS RKLSFWI1.R00.3173.A03.2204210138 04/21/2022 <4>[ 167.304738] Workqueue: i915-unordered retire_work_handler [i915] <4>[ 16 ---truncated---
CVE-2024-26936 In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate request buffer size in smb2_allocate_rsp_buf() The response buffer should be allocated in smb2_allocate_rsp_buf before validating request. But the fields in payload as well as smb2 header is used in smb2_allocate_rsp_buf(). This patch add simple buffer size validation to avoid potencial out-of-bounds in request buffer.
CVE-2024-26935 In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix unremoved procfs host directory regression Commit fc663711b944 ("scsi: core: Remove the /proc/scsi/${proc_name} directory earlier") fixed a bug related to modules loading/unloading, by adding a call to scsi_proc_hostdir_rm() on scsi_remove_host(). But that led to a potential duplicate call to the hostdir_rm() routine, since it's also called from scsi_host_dev_release(). That triggered a regression report, which was then fixed by commit be03df3d4bfe ("scsi: core: Fix a procfs host directory removal regression"). The fix just dropped the hostdir_rm() call from dev_release(). But it happens that this proc directory is created on scsi_host_alloc(), and that function "pairs" with scsi_host_dev_release(), while scsi_remove_host() pairs with scsi_add_host(). In other words, it seems the reason for removing the proc directory on dev_release() was meant to cover cases in which a SCSI host structure was allocated, but the call to scsi_add_host() didn't happen. And that pattern happens to exist in some error paths, for example. Syzkaller causes that by using USB raw gadget device, error'ing on usb-storage driver, at usb_stor_probe2(). By checking that path, we can see that the BadDevice label leads to a scsi_host_put() after a SCSI host allocation, but there's no call to scsi_add_host() in such path. That leads to messages like this in dmesg (and a leak of the SCSI host proc structure): usb-storage 4-1:87.51: USB Mass Storage device detected proc_dir_entry 'scsi/usb-storage' already registered WARNING: CPU: 1 PID: 3519 at fs/proc/generic.c:377 proc_register+0x347/0x4e0 fs/proc/generic.c:376 The proper fix seems to still call scsi_proc_hostdir_rm() on dev_release(), but guard that with the state check for SHOST_CREATED; there is even a comment in scsi_host_dev_release() detailing that: such conditional is meant for cases where the SCSI host was allocated but there was no calls to {add,remove}_host(), like the usb-storage case. This is what we propose here and with that, the error path of usb-storage does not trigger the warning anymore.
CVE-2024-26934 In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix deadlock in usb_deauthorize_interface() Among the attribute file callback routines in drivers/usb/core/sysfs.c, the interface_authorized_store() function is the only one which acquires a device lock on an ancestor device: It calls usb_deauthorize_interface(), which locks the interface's parent USB device. The will lead to deadlock if another process already owns that lock and tries to remove the interface, whether through a configuration change or because the device has been disconnected. As part of the removal procedure, device_del() waits for all ongoing sysfs attribute callbacks to complete. But usb_deauthorize_interface() can't complete until the device lock has been released, and the lock won't be released until the removal has finished. The mechanism provided by sysfs to prevent this kind of deadlock is to use the sysfs_break_active_protection() function, which tells sysfs not to wait for the attribute callback. Reported-and-tested by: Yue Sun <samsun1006219@gmail.com> Reported by: xingwei lee <xrivendell7@gmail.com>
CVE-2024-26933 In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix deadlock in port "disable" sysfs attribute The show and store callback routines for the "disable" sysfs attribute file in port.c acquire the device lock for the port's parent hub device. This can cause problems if another process has locked the hub to remove it or change its configuration: Removing the hub or changing its configuration requires the hub interface to be removed, which requires the port device to be removed, and device_del() waits until all outstanding sysfs attribute callbacks for the ports have returned. The lock can't be released until then. But the disable_show() or disable_store() routine can't return until after it has acquired the lock. The resulting deadlock can be avoided by calling sysfs_break_active_protection(). This will cause the sysfs core not to wait for the attribute's callback routine to return, allowing the removal to proceed. The disadvantage is that after making this call, there is no guarantee that the hub structure won't be deallocated at any moment. To prevent this, we have to acquire a reference to it first by calling hub_get().
CVE-2024-26932 In the Linux kernel, the following vulnerability has been resolved: usb: typec: tcpm: fix double-free issue in tcpm_port_unregister_pd() When unregister pd capabilitie in tcpm, KASAN will capture below double -free issue. The root cause is the same capabilitiy will be kfreed twice, the first time is kfreed by pd_capabilities_release() and the second time is explicitly kfreed by tcpm_port_unregister_pd(). [ 3.988059] BUG: KASAN: double-free in tcpm_port_unregister_pd+0x1a4/0x3dc [ 3.995001] Free of addr ffff0008164d3000 by task kworker/u16:0/10 [ 4.001206] [ 4.002712] CPU: 2 PID: 10 Comm: kworker/u16:0 Not tainted 6.8.0-rc5-next-20240220-05616-g52728c567a55 #53 [ 4.012402] Hardware name: Freescale i.MX8QXP MEK (DT) [ 4.017569] Workqueue: events_unbound deferred_probe_work_func [ 4.023456] Call trace: [ 4.025920] dump_backtrace+0x94/0xec [ 4.029629] show_stack+0x18/0x24 [ 4.032974] dump_stack_lvl+0x78/0x90 [ 4.036675] print_report+0xfc/0x5c0 [ 4.040289] kasan_report_invalid_free+0xa0/0xc0 [ 4.044937] __kasan_slab_free+0x124/0x154 [ 4.049072] kfree+0xb4/0x1e8 [ 4.052069] tcpm_port_unregister_pd+0x1a4/0x3dc [ 4.056725] tcpm_register_port+0x1dd0/0x2558 [ 4.061121] tcpci_register_port+0x420/0x71c [ 4.065430] tcpci_probe+0x118/0x2e0 To fix the issue, this will remove kree() from tcpm_port_unregister_pd().
CVE-2024-26931 In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix command flush on cable pull System crash due to command failed to flush back to SCSI layer. BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 27 PID: 793455 Comm: kworker/u130:6 Kdump: loaded Tainted: G OE --------- - - 4.18.0-372.9.1.el8.x86_64 #1 Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 09/03/2021 Workqueue: nvme-wq nvme_fc_connect_ctrl_work [nvme_fc] RIP: 0010:__wake_up_common+0x4c/0x190 Code: 24 10 4d 85 c9 74 0a 41 f6 01 04 0f 85 9d 00 00 00 48 8b 43 08 48 83 c3 08 4c 8d 48 e8 49 8d 41 18 48 39 c3 0f 84 f0 00 00 00 <49> 8b 41 18 89 54 24 08 31 ed 4c 8d 70 e8 45 8b 29 41 f6 c5 04 75 RSP: 0018:ffff95f3e0cb7cd0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff8b08d3b26328 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8b08d3b26320 RBP: 0000000000000001 R08: 0000000000000000 R09: ffffffffffffffe8 R10: 0000000000000000 R11: ffff95f3e0cb7a60 R12: ffff95f3e0cb7d20 R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8b2fdf6c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000002f1e410002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: __wake_up_common_lock+0x7c/0xc0 qla_nvme_ls_req+0x355/0x4c0 [qla2xxx] qla2xxx [0000:12:00.1]-f084:3: qlt_free_session_done: se_sess 0000000000000000 / sess ffff8ae1407ca000 from port 21:32:00:02:ac:07:ee:b8 loop_id 0x02 s_id 01:02:00 logout 1 keep 0 els_logo 0 ? __nvme_fc_send_ls_req+0x260/0x380 [nvme_fc] qla2xxx [0000:12:00.1]-207d:3: FCPort 21:32:00:02:ac:07:ee:b8 state transitioned from ONLINE to LOST - portid=010200. ? nvme_fc_send_ls_req.constprop.42+0x1a/0x45 [nvme_fc] qla2xxx [0000:12:00.1]-2109:3: qla2x00_schedule_rport_del 21320002ac07eeb8. rport ffff8ae598122000 roles 1 ? nvme_fc_connect_ctrl_work.cold.63+0x1e3/0xa7d [nvme_fc] qla2xxx [0000:12:00.1]-f084:3: qlt_free_session_done: se_sess 0000000000000000 / sess ffff8ae14801e000 from port 21:32:01:02:ad:f7:ee:b8 loop_id 0x04 s_id 01:02:01 logout 1 keep 0 els_logo 0 ? __switch_to+0x10c/0x450 ? process_one_work+0x1a7/0x360 qla2xxx [0000:12:00.1]-207d:3: FCPort 21:32:01:02:ad:f7:ee:b8 state transitioned from ONLINE to LOST - portid=010201. ? worker_thread+0x1ce/0x390 ? create_worker+0x1a0/0x1a0 qla2xxx [0000:12:00.1]-2109:3: qla2x00_schedule_rport_del 21320102adf7eeb8. rport ffff8ae3b2312800 roles 70 ? kthread+0x10a/0x120 qla2xxx [0000:12:00.1]-2112:3: qla_nvme_unregister_remote_port: unregister remoteport on ffff8ae14801e000 21320102adf7eeb8 ? set_kthread_struct+0x40/0x40 qla2xxx [0000:12:00.1]-2110:3: remoteport_delete of ffff8ae14801e000 21320102adf7eeb8 completed. ? ret_from_fork+0x1f/0x40 qla2xxx [0000:12:00.1]-f086:3: qlt_free_session_done: waiting for sess ffff8ae14801e000 logout The system was under memory stress where driver was not able to allocate an SRB to carry out error recovery of cable pull. The failure to flush causes upper layer to start modifying scsi_cmnd. When the system frees up some memory, the subsequent cable pull trigger another command flush. At this point the driver access a null pointer when attempting to DMA unmap the SGL. Add a check to make sure commands are flush back on session tear down to prevent the null pointer access.
CVE-2024-26930 In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix double free of the ha->vp_map pointer Coverity scan reported potential risk of double free of the pointer ha->vp_map. ha->vp_map was freed in qla2x00_mem_alloc(), and again freed in function qla2x00_mem_free(ha). Assign NULL to vp_map and kfree take care of NULL.
CVE-2024-26929 In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix double free of fcport The server was crashing after LOGO because fcport was getting freed twice. -----------[ cut here ]----------- kernel BUG at mm/slub.c:371! invalid opcode: 0000 1 SMP PTI CPU: 35 PID: 4610 Comm: bash Kdump: loaded Tainted: G OE --------- - - 4.18.0-425.3.1.el8.x86_64 #1 Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 09/03/2021 RIP: 0010:set_freepointer.part.57+0x0/0x10 RSP: 0018:ffffb07107027d90 EFLAGS: 00010246 RAX: ffff9cb7e3150000 RBX: ffff9cb7e332b9c0 RCX: ffff9cb7e3150400 RDX: 0000000000001f37 RSI: 0000000000000000 RDI: ffff9cb7c0005500 RBP: fffff693448c5400 R08: 0000000080000000 R09: 0000000000000009 R10: 0000000000000000 R11: 0000000000132af0 R12: ffff9cb7c0005500 R13: ffff9cb7e3150000 R14: ffffffffc06990e0 R15: ffff9cb7ea85ea58 FS: 00007ff6b79c2740(0000) GS:ffff9cb8f7ec0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055b426b7d700 CR3: 0000000169c18002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: kfree+0x238/0x250 qla2x00_els_dcmd_sp_free+0x20/0x230 [qla2xxx] ? qla24xx_els_dcmd_iocb+0x607/0x690 [qla2xxx] qla2x00_issue_logo+0x28c/0x2a0 [qla2xxx] ? qla2x00_issue_logo+0x28c/0x2a0 [qla2xxx] ? kernfs_fop_write+0x11e/0x1a0 Remove one of the free calls and add check for valid fcport. Also use function qla2x00_free_fcport() instead of kfree().
CVE-2024-26928 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_debug_files_proc_show() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-26927 In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Add some bounds checking to firmware data Smatch complains about "head->full_size - head->header_size" can underflow. To some extent, we're always going to have to trust the firmware a bit. However, it's easy enough to add a check for negatives, and let's add a upper bounds check as well.
CVE-2024-26926 In the Linux kernel, the following vulnerability has been resolved: binder: check offset alignment in binder_get_object() Commit 6d98eb95b450 ("binder: avoid potential data leakage when copying txn") introduced changes to how binder objects are copied. In doing so, it unintentionally removed an offset alignment check done through calls to binder_alloc_copy_from_buffer() -> check_buffer(). These calls were replaced in binder_get_object() with copy_from_user(), so now an explicit offset alignment check is needed here. This avoids later complications when unwinding the objects gets harder. It is worth noting this check existed prior to commit 7a67a39320df ("binder: add function to copy binder object from buffer"), likely removed due to redundancy at the time.
CVE-2024-26925 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: release mutex after nft_gc_seq_end from abort path The commit mutex should not be released during the critical section between nft_gc_seq_begin() and nft_gc_seq_end(), otherwise, async GC worker could collect expired objects and get the released commit lock within the same GC sequence. nf_tables_module_autoload() temporarily releases the mutex to load module dependencies, then it goes back to replay the transaction again. Move it at the end of the abort phase after nft_gc_seq_end() is called.
CVE-2024-26924 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: do not free live element Pablo reports a crash with large batches of elements with a back-to-back add/remove pattern. Quoting Pablo: add_elem("00000000") timeout 100 ms ... add_elem("0000000X") timeout 100 ms del_elem("0000000X") <---------------- delete one that was just added ... add_elem("00005000") timeout 100 ms 1) nft_pipapo_remove() removes element 0000000X Then, KASAN shows a splat. Looking at the remove function there is a chance that we will drop a rule that maps to a non-deactivated element. Removal happens in two steps, first we do a lookup for key k and return the to-be-removed element and mark it as inactive in the next generation. Then, in a second step, the element gets removed from the set/map. The _remove function does not work correctly if we have more than one element that share the same key. This can happen if we insert an element into a set when the set already holds an element with same key, but the element mapping to the existing key has timed out or is not active in the next generation. In such case its possible that removal will unmap the wrong element. If this happens, we will leak the non-deactivated element, it becomes unreachable. The element that got deactivated (and will be freed later) will remain reachable in the set data structure, this can result in a crash when such an element is retrieved during lookup (stale pointer). Add a check that the fully matching key does in fact map to the element that we have marked as inactive in the deactivation step. If not, we need to continue searching. Add a bug/warn trap at the end of the function as well, the remove function must not ever be called with an invisible/unreachable/non-existent element. v2: avoid uneeded temporary variable (Stefano)
CVE-2024-26923 In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix garbage collector racing against connect() Garbage collector does not take into account the risk of embryo getting enqueued during the garbage collection. If such embryo has a peer that carries SCM_RIGHTS, two consecutive passes of scan_children() may see a different set of children. Leading to an incorrectly elevated inflight count, and then a dangling pointer within the gc_inflight_list. sockets are AF_UNIX/SOCK_STREAM S is an unconnected socket L is a listening in-flight socket bound to addr, not in fdtable V's fd will be passed via sendmsg(), gets inflight count bumped connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc() ---------------- ------------------------- ----------- NS = unix_create1() skb1 = sock_wmalloc(NS) L = unix_find_other(addr) unix_state_lock(L) unix_peer(S) = NS // V count=1 inflight=0 NS = unix_peer(S) skb2 = sock_alloc() skb_queue_tail(NS, skb2[V]) // V became in-flight // V count=2 inflight=1 close(V) // V count=1 inflight=1 // GC candidate condition met for u in gc_inflight_list: if (total_refs == inflight_refs) add u to gc_candidates // gc_candidates={L, V} for u in gc_candidates: scan_children(u, dec_inflight) // embryo (skb1) was not // reachable from L yet, so V's // inflight remains unchanged __skb_queue_tail(L, skb1) unix_state_unlock(L) for u in gc_candidates: if (u.inflight) scan_children(u, inc_inflight_move_tail) // V count=1 inflight=2 (!) If there is a GC-candidate listening socket, lock/unlock its state. This makes GC wait until the end of any ongoing connect() to that socket. After flipping the lock, a possibly SCM-laden embryo is already enqueued. And if there is another embryo coming, it can not possibly carry SCM_RIGHTS. At this point, unix_inflight() can not happen because unix_gc_lock is already taken. Inflight graph remains unaffected.
CVE-2024-26922 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: validate the parameters of bo mapping operations more clearly Verify the parameters of amdgpu_vm_bo_(map/replace_map/clearing_mappings) in one common place.
CVE-2024-26921 In the Linux kernel, the following vulnerability has been resolved: inet: inet_defrag: prevent sk release while still in use ip_local_out() and other functions can pass skb->sk as function argument. If the skb is a fragment and reassembly happens before such function call returns, the sk must not be released. This affects skb fragments reassembled via netfilter or similar modules, e.g. openvswitch or ct_act.c, when run as part of tx pipeline. Eric Dumazet made an initial analysis of this bug. Quoting Eric: Calling ip_defrag() in output path is also implying skb_orphan(), which is buggy because output path relies on sk not disappearing. A relevant old patch about the issue was : 8282f27449bf ("inet: frag: Always orphan skbs inside ip_defrag()") [..] net/ipv4/ip_output.c depends on skb->sk being set, and probably to an inet socket, not an arbitrary one. If we orphan the packet in ipvlan, then downstream things like FQ packet scheduler will not work properly. We need to change ip_defrag() to only use skb_orphan() when really needed, ie whenever frag_list is going to be used. Eric suggested to stash sk in fragment queue and made an initial patch. However there is a problem with this: If skb is refragmented again right after, ip_do_fragment() will copy head->sk to the new fragments, and sets up destructor to sock_wfree. IOW, we have no choice but to fix up sk_wmem accouting to reflect the fully reassembled skb, else wmem will underflow. This change moves the orphan down into the core, to last possible moment. As ip_defrag_offset is aliased with sk_buff->sk member, we must move the offset into the FRAG_CB, else skb->sk gets clobbered. This allows to delay the orphaning long enough to learn if the skb has to be queued or if the skb is completing the reasm queue. In the former case, things work as before, skb is orphaned. This is safe because skb gets queued/stolen and won't continue past reasm engine. In the latter case, we will steal the skb->sk reference, reattach it to the head skb, and fix up wmem accouting when inet_frag inflates truesize.
CVE-2024-26920 In the Linux kernel, the following vulnerability has been resolved: tracing/trigger: Fix to return error if failed to alloc snapshot Fix register_snapshot_trigger() to return error code if it failed to allocate a snapshot instead of 0 (success). Unless that, it will register snapshot trigger without an error.
CVE-2024-26919 In the Linux kernel, the following vulnerability has been resolved: usb: ulpi: Fix debugfs directory leak The ULPI per-device debugfs root is named after the ulpi device's parent, but ulpi_unregister_interface tries to remove a debugfs directory named after the ulpi device itself. This results in the directory sticking around and preventing subsequent (deferred) probes from succeeding. Change the directory name to match the ulpi device.
CVE-2024-26918 In the Linux kernel, the following vulnerability has been resolved: PCI: Fix active state requirement in PME polling The commit noted in fixes added a bogus requirement that runtime PM managed devices need to be in the RPM_ACTIVE state for PME polling. In fact, only devices in low power states should be polled. However there's still a requirement that the device config space must be accessible, which has implications for both the current state of the polled device and the parent bridge, when present. It's not sufficient to assume the bridge remains in D0 and cases have been observed where the bridge passes the D0 test, but the PM state indicates RPM_SUSPENDING and config space of the polled device becomes inaccessible during pci_pme_wakeup(). Therefore, since the bridge is already effectively required to be in the RPM_ACTIVE state, formalize this in the code and elevate the PM usage count to maintain the state while polling the subordinate device. This resolves a regression reported in the bugzilla below where a Thunderbolt/USB4 hierarchy fails to scan for an attached NVMe endpoint downstream of a bridge in a D3hot power state.
CVE-2024-26917 In the Linux kernel, the following vulnerability has been resolved: scsi: Revert "scsi: fcoe: Fix potential deadlock on &fip->ctlr_lock" This reverts commit 1a1975551943f681772720f639ff42fbaa746212. This commit causes interrupts to be lost for FCoE devices, since it changed sping locks from "bh" to "irqsave". Instead, a work queue should be used, and will be addressed in a separate commit.
CVE-2024-26916 In the Linux kernel, the following vulnerability has been resolved: Revert "drm/amd: flush any delayed gfxoff on suspend entry" commit ab4750332dbe ("drm/amdgpu/sdma5.2: add begin/end_use ring callbacks") caused GFXOFF control to be used more heavily and the codepath that was removed from commit 0dee72639533 ("drm/amd: flush any delayed gfxoff on suspend entry") now can be exercised at suspend again. Users report that by using GNOME to suspend the lockscreen trigger will cause SDMA traffic and the system can deadlock. This reverts commit 0dee726395333fea833eaaf838bc80962df886c8.
CVE-2024-26915 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Reset IH OVERFLOW_CLEAR bit Allows us to detect subsequent IH ring buffer overflows as well.
CVE-2024-26914 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix incorrect mpc_combine array size [why] MAX_SURFACES is per stream, while MAX_PLANES is per asic. The mpc_combine is an array that records all the planes per asic. Therefore MAX_PLANES should be used as the array size. Using MAX_SURFACES causes array overflow when there are more than 3 planes. [how] Use the MAX_PLANES for the mpc_combine array size.
CVE-2024-26913 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix dcn35 8k30 Underflow/Corruption Issue [why] odm calculation is missing for pipe split policy determination and cause Underflow/Corruption issue. [how] Add the odm calculation.
CVE-2024-26912 In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: fix several DMA buffer leaks Nouveau manages GSP-RM DMA buffers with nvkm_gsp_mem objects. Several of these buffers are never dealloced. Some of them can be deallocated right after GSP-RM is initialized, but the rest need to stay until the driver unloads. Also futher bullet-proof these objects by poisoning the buffer and clearing the nvkm_gsp_mem object when it is deallocated. Poisoning the buffer should trigger an error (or crash) from GSP-RM if it tries to access the buffer after we've deallocated it, because we were wrong about when it is safe to deallocate. Finally, change the mem->size field to a size_t because that's the same type that dma_alloc_coherent expects.
CVE-2024-26911 In the Linux kernel, the following vulnerability has been resolved: drm/buddy: Fix alloc_range() error handling code Few users have observed display corruption when they boot the machine to KDE Plasma or playing games. We have root caused the problem that whenever alloc_range() couldn't find the required memory blocks the function was returning SUCCESS in some of the corner cases. The right approach would be if the total allocated size is less than the required size, the function should return -ENOSPC.
CVE-2024-26910 In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: fix performance regression in swap operation The patch "netfilter: ipset: fix race condition between swap/destroy and kernel side add/del/test", commit 28628fa9 fixes a race condition. But the synchronize_rcu() added to the swap function unnecessarily slows it down: it can safely be moved to destroy and use call_rcu() instead. Eric Dumazet pointed out that simply calling the destroy functions as rcu callback does not work: sets with timeout use garbage collectors which need cancelling at destroy which can wait. Therefore the destroy functions are split into two: cancelling garbage collectors safely at executing the command received by netlink and moving the remaining part only into the rcu callback.
CVE-2024-26909 In the Linux kernel, the following vulnerability has been resolved: soc: qcom: pmic_glink_altmode: fix drm bridge use-after-free A recent DRM series purporting to simplify support for "transparent bridges" and handling of probe deferrals ironically exposed a use-after-free issue on pmic_glink_altmode probe deferral. This has manifested itself as the display subsystem occasionally failing to initialise and NULL-pointer dereferences during boot of machines like the Lenovo ThinkPad X13s. Specifically, the dp-hpd bridge is currently registered before all resources have been acquired which means that it can also be deregistered on probe deferrals. In the meantime there is a race window where the new aux bridge driver (or PHY driver previously) may have looked up the dp-hpd bridge and stored a (non-reference-counted) pointer to the bridge which is about to be deallocated. When the display controller is later initialised, this triggers a use-after-free when attaching the bridges: dp -> aux -> dp-hpd (freed) which may, for example, result in the freed bridge failing to attach: [drm:drm_bridge_attach [drm]] *ERROR* failed to attach bridge /soc@0/phy@88eb000 to encoder TMDS-31: -16 or a NULL-pointer dereference: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 ... Call trace: drm_bridge_attach+0x70/0x1a8 [drm] drm_aux_bridge_attach+0x24/0x38 [aux_bridge] drm_bridge_attach+0x80/0x1a8 [drm] dp_bridge_init+0xa8/0x15c [msm] msm_dp_modeset_init+0x28/0xc4 [msm] The DRM bridge implementation is clearly fragile and implicitly built on the assumption that bridges may never go away. In this case, the fix is to move the bridge registration in the pmic_glink_altmode driver to after all resources have been looked up. Incidentally, with the new dp-hpd bridge implementation, which registers child devices, this is also a requirement due to a long-standing issue in driver core that can otherwise lead to a probe deferral loop (see commit fbc35b45f9f6 ("Add documentation on meaning of -EPROBE_DEFER")). [DB: slightly fixed commit message by adding the word 'commit']
CVE-2024-26907 In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix fortify source warning while accessing Eth segment ------------[ cut here ]------------ memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2) WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy [last unloaded: mlx_compat(OE)] CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7 RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8 R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80 FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? show_regs+0x72/0x90 ? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] ? __warn+0x8d/0x160 ? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] ? report_bug+0x1bb/0x1d0 ? handle_bug+0x46/0x90 ? exc_invalid_op+0x19/0x80 ? asm_exc_invalid_op+0x1b/0x20 ? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib] ipoib_send+0x2ec/0x770 [ib_ipoib] ipoib_start_xmit+0x5a0/0x770 [ib_ipoib] dev_hard_start_xmit+0x8e/0x1e0 ? validate_xmit_skb_list+0x4d/0x80 sch_direct_xmit+0x116/0x3a0 __dev_xmit_skb+0x1fd/0x580 __dev_queue_xmit+0x284/0x6b0 ? _raw_spin_unlock_irq+0xe/0x50 ? __flush_work.isra.0+0x20d/0x370 ? push_pseudo_header+0x17/0x40 [ib_ipoib] neigh_connected_output+0xcd/0x110 ip_finish_output2+0x179/0x480 ? __smp_call_single_queue+0x61/0xa0 __ip_finish_output+0xc3/0x190 ip_finish_output+0x2e/0xf0 ip_output+0x78/0x110 ? __pfx_ip_finish_output+0x10/0x10 ip_local_out+0x64/0x70 __ip_queue_xmit+0x18a/0x460 ip_queue_xmit+0x15/0x30 __tcp_transmit_skb+0x914/0x9c0 tcp_write_xmit+0x334/0x8d0 tcp_push_one+0x3c/0x60 tcp_sendmsg_locked+0x2e1/0xac0 tcp_sendmsg+0x2d/0x50 inet_sendmsg+0x43/0x90 sock_sendmsg+0x68/0x80 sock_write_iter+0x93/0x100 vfs_write+0x326/0x3c0 ksys_write+0xbd/0xf0 ? do_syscall_64+0x69/0x90 __x64_sys_write+0x19/0x30 do_syscall_ ---truncated---
CVE-2024-26906 In the Linux kernel, the following vulnerability has been resolved: x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault() When trying to use copy_from_kernel_nofault() to read vsyscall page through a bpf program, the following oops was reported: BUG: unable to handle page fault for address: ffffffffff600000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:copy_from_kernel_nofault+0x6f/0x110 ...... Call Trace: <TASK> ? copy_from_kernel_nofault+0x6f/0x110 bpf_probe_read_kernel+0x1d/0x50 bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d trace_call_bpf+0xc5/0x1c0 perf_call_bpf_enter.isra.0+0x69/0xb0 perf_syscall_enter+0x13e/0x200 syscall_trace_enter+0x188/0x1c0 do_syscall_64+0xb5/0xe0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> ...... ---[ end trace 0000000000000000 ]--- The oops is triggered when: 1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall page and invokes copy_from_kernel_nofault() which in turn calls __get_user_asm(). 2) Because the vsyscall page address is not readable from kernel space, a page fault exception is triggered accordingly. 3) handle_page_fault() considers the vsyscall page address as a user space address instead of a kernel space address. This results in the fix-up setup by bpf not being applied and a page_fault_oops() is invoked due to SMAP. Considering handle_page_fault() has already considered the vsyscall page address as a userspace address, fix the problem by disallowing vsyscall page read for copy_from_kernel_nofault().
CVE-2024-26905 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix data races when accessing the reserved amount of block reserves At space_info.c we have several places where we access the ->reserved field of a block reserve without taking the block reserve's spinlock first, which makes KCSAN warn about a data race since that field is always updated while holding the spinlock. The reports from KCSAN are like the following: [117.193526] BUG: KCSAN: data-race in btrfs_block_rsv_release [btrfs] / need_preemptive_reclaim [btrfs] [117.195148] read to 0x000000017f587190 of 8 bytes by task 6303 on cpu 3: [117.195172] need_preemptive_reclaim+0x222/0x2f0 [btrfs] [117.195992] __reserve_bytes+0xbb0/0xdc8 [btrfs] [117.196807] btrfs_reserve_metadata_bytes+0x4c/0x120 [btrfs] [117.197620] btrfs_block_rsv_add+0x78/0xa8 [btrfs] [117.198434] btrfs_delayed_update_inode+0x154/0x368 [btrfs] [117.199300] btrfs_update_inode+0x108/0x1c8 [btrfs] [117.200122] btrfs_dirty_inode+0xb4/0x140 [btrfs] [117.200937] btrfs_update_time+0x8c/0xb0 [btrfs] [117.201754] touch_atime+0x16c/0x1e0 [117.201789] filemap_read+0x674/0x728 [117.201823] btrfs_file_read_iter+0xf8/0x410 [btrfs] [117.202653] vfs_read+0x2b6/0x498 [117.203454] ksys_read+0xa2/0x150 [117.203473] __s390x_sys_read+0x68/0x88 [117.203495] do_syscall+0x1c6/0x210 [117.203517] __do_syscall+0xc8/0xf0 [117.203539] system_call+0x70/0x98 [117.203579] write to 0x000000017f587190 of 8 bytes by task 11 on cpu 0: [117.203604] btrfs_block_rsv_release+0x2e8/0x578 [btrfs] [117.204432] btrfs_delayed_inode_release_metadata+0x7c/0x1d0 [btrfs] [117.205259] __btrfs_update_delayed_inode+0x37c/0x5e0 [btrfs] [117.206093] btrfs_async_run_delayed_root+0x356/0x498 [btrfs] [117.206917] btrfs_work_helper+0x160/0x7a0 [btrfs] [117.207738] process_one_work+0x3b6/0x838 [117.207768] worker_thread+0x75e/0xb10 [117.207797] kthread+0x21a/0x230 [117.207830] __ret_from_fork+0x6c/0xb8 [117.207861] ret_from_fork+0xa/0x30 So add a helper to get the reserved amount of a block reserve while holding the lock. The value may be not be up to date anymore when used by need_preemptive_reclaim() and btrfs_preempt_reclaim_metadata_space(), but that's ok since the worst it can do is cause more reclaim work do be done sooner rather than later. Reading the field while holding the lock instead of using the data_race() annotation is used in order to prevent load tearing.
CVE-2024-26903 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: rfcomm: Fix null-ptr-deref in rfcomm_check_security During our fuzz testing of the connection and disconnection process at the RFCOMM layer, we discovered this bug. By comparing the packets from a normal connection and disconnection process with the testcase that triggered a KASAN report. We analyzed the cause of this bug as follows: 1. In the packets captured during a normal connection, the host sends a `Read Encryption Key Size` type of `HCI_CMD` packet (Command Opcode: 0x1408) to the controller to inquire the length of encryption key.After receiving this packet, the controller immediately replies with a Command Completepacket (Event Code: 0x0e) to return the Encryption Key Size. 2. In our fuzz test case, the timing of the controller's response to this packet was delayed to an unexpected point: after the RFCOMM and L2CAP layers had disconnected but before the HCI layer had disconnected. 3. After receiving the Encryption Key Size Response at the time described in point 2, the host still called the rfcomm_check_security function. However, by this time `struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;` had already been released, and when the function executed `return hci_conn_security(conn->hcon, d->sec_level, auth_type, d->out);`, specifically when accessing `conn->hcon`, a null-ptr-deref error occurred. To fix this bug, check if `sk->sk_state` is BT_CLOSED before calling rfcomm_recv_frame in rfcomm_process_rx.
CVE-2024-26902 In the Linux kernel, the following vulnerability has been resolved: perf: RISCV: Fix panic on pmu overflow handler (1 << idx) of int is not desired when setting bits in unsigned long overflowed_ctrs, use BIT() instead. This panic happens when running 'perf record -e branches' on sophgo sg2042. [ 273.311852] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000098 [ 273.320851] Oops [#1] [ 273.323179] Modules linked in: [ 273.326303] CPU: 0 PID: 1475 Comm: perf Not tainted 6.6.0-rc3+ #9 [ 273.332521] Hardware name: Sophgo Mango (DT) [ 273.336878] epc : riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.342291] ra : pmu_sbi_ovf_handler+0x2e0/0x34e [ 273.347091] epc : ffffffff80aecd98 ra : ffffffff80aee056 sp : fffffff6e36928b0 [ 273.354454] gp : ffffffff821f82d0 tp : ffffffd90c353200 t0 : 0000002ade4f9978 [ 273.361815] t1 : 0000000000504d55 t2 : ffffffff8016cd8c s0 : fffffff6e3692a70 [ 273.369180] s1 : 0000000000000020 a0 : 0000000000000000 a1 : 00001a8e81800000 [ 273.376540] a2 : 0000003c00070198 a3 : 0000003c00db75a4 a4 : 0000000000000015 [ 273.383901] a5 : ffffffd7ff8804b0 a6 : 0000000000000015 a7 : 000000000000002a [ 273.391327] s2 : 000000000000ffff s3 : 0000000000000000 s4 : ffffffd7ff8803b0 [ 273.398773] s5 : 0000000000504d55 s6 : ffffffd905069800 s7 : ffffffff821fe210 [ 273.406139] s8 : 000000007fffffff s9 : ffffffd7ff8803b0 s10: ffffffd903f29098 [ 273.413660] s11: 0000000080000000 t3 : 0000000000000003 t4 : ffffffff8017a0ca [ 273.421022] t5 : ffffffff8023cfc2 t6 : ffffffd9040780e8 [ 273.426437] status: 0000000200000100 badaddr: 0000000000000098 cause: 000000000000000d [ 273.434512] [<ffffffff80aecd98>] riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.441169] [<ffffffff80076bd8>] handle_percpu_devid_irq+0x98/0x1ee [ 273.447562] [<ffffffff80071158>] generic_handle_domain_irq+0x28/0x36 [ 273.454151] [<ffffffff8047a99a>] riscv_intc_irq+0x36/0x4e [ 273.459659] [<ffffffff80c944de>] handle_riscv_irq+0x4a/0x74 [ 273.465442] [<ffffffff80c94c48>] do_irq+0x62/0x92 [ 273.470360] Code: 0420 60a2 6402 5529 0141 8082 0013 0000 0013 0000 (6d5c) b783 [ 273.477921] ---[ end trace 0000000000000000 ]--- [ 273.482630] Kernel panic - not syncing: Fatal exception in interrupt
CVE-2024-26901 In the Linux kernel, the following vulnerability has been resolved: do_sys_name_to_handle(): use kzalloc() to fix kernel-infoleak syzbot identified a kernel information leak vulnerability in do_sys_name_to_handle() and issued the following report [1]. [1] "BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x100 lib/usercopy.c:40 instrument_copy_to_user include/linux/instrumented.h:114 [inline] _copy_to_user+0xbc/0x100 lib/usercopy.c:40 copy_to_user include/linux/uaccess.h:191 [inline] do_sys_name_to_handle fs/fhandle.c:73 [inline] __do_sys_name_to_handle_at fs/fhandle.c:112 [inline] __se_sys_name_to_handle_at+0x949/0xb10 fs/fhandle.c:94 __x64_sys_name_to_handle_at+0xe4/0x140 fs/fhandle.c:94 ... Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] __kmem_cache_alloc_node+0x5c9/0x970 mm/slub.c:3517 __do_kmalloc_node mm/slab_common.c:1006 [inline] __kmalloc+0x121/0x3c0 mm/slab_common.c:1020 kmalloc include/linux/slab.h:604 [inline] do_sys_name_to_handle fs/fhandle.c:39 [inline] __do_sys_name_to_handle_at fs/fhandle.c:112 [inline] __se_sys_name_to_handle_at+0x441/0xb10 fs/fhandle.c:94 __x64_sys_name_to_handle_at+0xe4/0x140 fs/fhandle.c:94 ... Bytes 18-19 of 20 are uninitialized Memory access of size 20 starts at ffff888128a46380 Data copied to user address 0000000020000240" Per Chuck Lever's suggestion, use kzalloc() instead of kmalloc() to solve the problem.
CVE-2024-26900 In the Linux kernel, the following vulnerability has been resolved: md: fix kmemleak of rdev->serial If kobject_add() is fail in bind_rdev_to_array(), 'rdev->serial' will be alloc not be freed, and kmemleak occurs. unreferenced object 0xffff88815a350000 (size 49152): comm "mdadm", pid 789, jiffies 4294716910 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc f773277a): [<0000000058b0a453>] kmemleak_alloc+0x61/0xe0 [<00000000366adf14>] __kmalloc_large_node+0x15e/0x270 [<000000002e82961b>] __kmalloc_node.cold+0x11/0x7f [<00000000f206d60a>] kvmalloc_node+0x74/0x150 [<0000000034bf3363>] rdev_init_serial+0x67/0x170 [<0000000010e08fe9>] mddev_create_serial_pool+0x62/0x220 [<00000000c3837bf0>] bind_rdev_to_array+0x2af/0x630 [<0000000073c28560>] md_add_new_disk+0x400/0x9f0 [<00000000770e30ff>] md_ioctl+0x15bf/0x1c10 [<000000006cfab718>] blkdev_ioctl+0x191/0x3f0 [<0000000085086a11>] vfs_ioctl+0x22/0x60 [<0000000018b656fe>] __x64_sys_ioctl+0xba/0xe0 [<00000000e54e675e>] do_syscall_64+0x71/0x150 [<000000008b0ad622>] entry_SYSCALL_64_after_hwframe+0x6c/0x74
CVE-2024-26899 In the Linux kernel, the following vulnerability has been resolved: block: fix deadlock between bd_link_disk_holder and partition scan 'open_mutex' of gendisk is used to protect open/close block devices. But in bd_link_disk_holder(), it is used to protect the creation of symlink between holding disk and slave bdev, which introduces some issues. When bd_link_disk_holder() is called, the driver is usually in the process of initialization/modification and may suspend submitting io. At this time, any io hold 'open_mutex', such as scanning partitions, can cause deadlocks. For example, in raid: T1 T2 bdev_open_by_dev lock open_mutex [1] ... efi_partition ... md_submit_bio md_ioctl mddev_syspend -> suspend all io md_add_new_disk bind_rdev_to_array bd_link_disk_holder try lock open_mutex [2] md_handle_request -> wait mddev_resume T1 scan partition, T2 add a new device to raid. T1 waits for T2 to resume mddev, but T2 waits for open_mutex held by T1. Deadlock occurs. Fix it by introducing a local mutex 'blk_holder_mutex' to replace 'open_mutex'.
CVE-2024-26898 In the Linux kernel, the following vulnerability has been resolved: aoe: fix the potential use-after-free problem in aoecmd_cfg_pkts This patch is against CVE-2023-6270. The description of cve is: A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution. In aoecmd_cfg_pkts(), it always calls dev_put(ifp) when skb initial code is finished. But the net_device ifp will still be used in later tx()->dev_queue_xmit() in kthread. Which means that the dev_put(ifp) should NOT be called in the success path of skb initial code in aoecmd_cfg_pkts(). Otherwise tx() may run into use-after-free because the net_device is freed. This patch removed the dev_put(ifp) in the success path in aoecmd_cfg_pkts(), and added dev_put() after skb xmit in tx().
CVE-2024-26897 In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: delay all of ath9k_wmi_event_tasklet() until init is complete The ath9k_wmi_event_tasklet() used in ath9k_htc assumes that all the data structures have been fully initialised by the time it runs. However, because of the order in which things are initialised, this is not guaranteed to be the case, because the device is exposed to the USB subsystem before the ath9k driver initialisation is completed. We already committed a partial fix for this in commit: 8b3046abc99e ("ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()") However, that commit only aborted the WMI_TXSTATUS_EVENTID command in the event tasklet, pairing it with an "initialisation complete" bit in the TX struct. It seems syzbot managed to trigger the race for one of the other commands as well, so let's just move the existing synchronisation bit to cover the whole tasklet (setting it at the end of ath9k_htc_probe_device() instead of inside ath9k_tx_init()).
CVE-2024-26896 In the Linux kernel, the following vulnerability has been resolved: wifi: wfx: fix memory leak when starting AP Kmemleak reported this error: unreferenced object 0xd73d1180 (size 184): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.245s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 1e 00 01 00 00 00 00 00 ................ backtrace: [<5ca11420>] kmem_cache_alloc+0x20c/0x5ac [<127bdd74>] __alloc_skb+0x144/0x170 [<fb8a5e38>] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [<f965b9b6>] netlink_sendmsg+0x1e8/0x428 [<aadb8231>] ____sys_sendmsg+0x1e0/0x274 [<d2b5212d>] ___sys_sendmsg+0x80/0xb4 [<69954f45>] __sys_sendmsg+0x64/0xa8 unreferenced object 0xce087000 (size 1024): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.246s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 10 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............ backtrace: [<9a993714>] __kmalloc_track_caller+0x230/0x600 [<f83ea192>] kmalloc_reserve.constprop.0+0x30/0x74 [<a2c61343>] __alloc_skb+0xa0/0x170 [<fb8a5e38>] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [<f965b9b6>] netlink_sendmsg+0x1e8/0x428 [<aadb8231>] ____sys_sendmsg+0x1e0/0x274 [<d2b5212d>] ___sys_sendmsg+0x80/0xb4 However, since the kernel is build optimized, it seems the stack is not accurate. It appears the issue is related to wfx_set_mfp_ap(). The issue is obvious in this function: memory allocated by ieee80211_beacon_get() is never released. Fixing this leak makes kmemleak happy.
CVE-2024-26895 In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: prevent use-after-free on vif when cleaning up all interfaces wilc_netdev_cleanup currently triggers a KASAN warning, which can be observed on interface registration error path, or simply by removing the module/unbinding device from driver: echo spi0.1 > /sys/bus/spi/drivers/wilc1000_spi/unbind ================================================================== BUG: KASAN: slab-use-after-free in wilc_netdev_cleanup+0x508/0x5cc Read of size 4 at addr c54d1ce8 by task sh/86 CPU: 0 PID: 86 Comm: sh Not tainted 6.8.0-rc1+ #117 Hardware name: Atmel SAMA5 unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x34/0x58 dump_stack_lvl from print_report+0x154/0x500 print_report from kasan_report+0xac/0xd8 kasan_report from wilc_netdev_cleanup+0x508/0x5cc wilc_netdev_cleanup from wilc_bus_remove+0xc8/0xec wilc_bus_remove from spi_remove+0x8c/0xac spi_remove from device_release_driver_internal+0x434/0x5f8 device_release_driver_internal from unbind_store+0xbc/0x108 unbind_store from kernfs_fop_write_iter+0x398/0x584 kernfs_fop_write_iter from vfs_write+0x728/0xf88 vfs_write from ksys_write+0x110/0x1e4 ksys_write from ret_fast_syscall+0x0/0x1c [...] Allocated by task 1: kasan_save_track+0x30/0x5c __kasan_kmalloc+0x8c/0x94 __kmalloc_node+0x1cc/0x3e4 kvmalloc_node+0x48/0x180 alloc_netdev_mqs+0x68/0x11dc alloc_etherdev_mqs+0x28/0x34 wilc_netdev_ifc_init+0x34/0x8ec wilc_cfg80211_init+0x690/0x910 wilc_bus_probe+0xe0/0x4a0 spi_probe+0x158/0x1b0 really_probe+0x270/0xdf4 __driver_probe_device+0x1dc/0x580 driver_probe_device+0x60/0x140 __driver_attach+0x228/0x5d4 bus_for_each_dev+0x13c/0x1a8 bus_add_driver+0x2a0/0x608 driver_register+0x24c/0x578 do_one_initcall+0x180/0x310 kernel_init_freeable+0x424/0x484 kernel_init+0x20/0x148 ret_from_fork+0x14/0x28 Freed by task 86: kasan_save_track+0x30/0x5c kasan_save_free_info+0x38/0x58 __kasan_slab_free+0xe4/0x140 kfree+0xb0/0x238 device_release+0xc0/0x2a8 kobject_put+0x1d4/0x46c netdev_run_todo+0x8fc/0x11d0 wilc_netdev_cleanup+0x1e4/0x5cc wilc_bus_remove+0xc8/0xec spi_remove+0x8c/0xac device_release_driver_internal+0x434/0x5f8 unbind_store+0xbc/0x108 kernfs_fop_write_iter+0x398/0x584 vfs_write+0x728/0xf88 ksys_write+0x110/0x1e4 ret_fast_syscall+0x0/0x1c [...] David Mosberger-Tan initial investigation [1] showed that this use-after-free is due to netdevice unregistration during vif list traversal. When unregistering a net device, since the needs_free_netdev has been set to true during registration, the netdevice object is also freed, and as a consequence, the corresponding vif object too, since it is attached to it as private netdevice data. The next occurrence of the loop then tries to access freed vif pointer to the list to move forward in the list. Fix this use-after-free thanks to two mechanisms: - navigate in the list with list_for_each_entry_safe, which allows to safely modify the list as we go through each element. For each element, remove it from the list with list_del_rcu - make sure to wait for RCU grace period end after each vif removal to make sure it is safe to free the corresponding vif too (through unregister_netdev) Since we are in a RCU "modifier" path (not a "reader" path), and because such path is expected not to be concurrent to any other modifier (we are using the vif_mutex lock), we do not need to use RCU list API, that's why we can benefit from list_for_each_entry_safe. [1] https://lore.kernel.org/linux-wireless/ab077dbe58b1ea5de0a3b2ca21f275a07af967d2.camel@egauge.net/
CVE-2024-26894 In the Linux kernel, the following vulnerability has been resolved: ACPI: processor_idle: Fix memory leak in acpi_processor_power_exit() After unregistering the CPU idle device, the memory associated with it is not freed, leading to a memory leak: unreferenced object 0xffff896282f6c000 (size 1024): comm "swapper/0", pid 1, jiffies 4294893170 hex dump (first 32 bytes): 00 00 00 00 0b 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 8836a742): [<ffffffff993495ed>] kmalloc_trace+0x29d/0x340 [<ffffffff9972f3b3>] acpi_processor_power_init+0xf3/0x1c0 [<ffffffff9972d263>] __acpi_processor_start+0xd3/0xf0 [<ffffffff9972d2bc>] acpi_processor_start+0x2c/0x50 [<ffffffff99805872>] really_probe+0xe2/0x480 [<ffffffff99805c98>] __driver_probe_device+0x78/0x160 [<ffffffff99805daf>] driver_probe_device+0x1f/0x90 [<ffffffff9980601e>] __driver_attach+0xce/0x1c0 [<ffffffff99803170>] bus_for_each_dev+0x70/0xc0 [<ffffffff99804822>] bus_add_driver+0x112/0x210 [<ffffffff99807245>] driver_register+0x55/0x100 [<ffffffff9aee4acb>] acpi_processor_driver_init+0x3b/0xc0 [<ffffffff990012d1>] do_one_initcall+0x41/0x300 [<ffffffff9ae7c4b0>] kernel_init_freeable+0x320/0x470 [<ffffffff99b231f6>] kernel_init+0x16/0x1b0 [<ffffffff99042e6d>] ret_from_fork+0x2d/0x50 Fix this by freeing the CPU idle device after unregistering it.
CVE-2024-26893 In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Fix double free in SMC transport cleanup path When the generic SCMI code tears down a channel, it calls the chan_free callback function, defined by each transport. Since multiple protocols might share the same transport_info member, chan_free() might want to clean up the same member multiple times within the given SCMI transport implementation. In this case, it is SMC transport. This will lead to a NULL pointer dereference at the second time: | scmi_protocol scmi_dev.1: Enabled polling mode TX channel - prot_id:16 | arm-scmi firmware:scmi: SCMI Notifications - Core Enabled. | arm-scmi firmware:scmi: unable to communicate with SCMI | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 | Mem abort info: | ESR = 0x0000000096000004 | EC = 0x25: DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | FSC = 0x04: level 0 translation fault | Data abort info: | ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 | CM = 0, WnR = 0, TnD = 0, TagAccess = 0 | GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 | user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881ef8000 | [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 | Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP | Modules linked in: | CPU: 4 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-00124-g455ef3d016c9-dirty #793 | Hardware name: FVP Base RevC (DT) | pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) | pc : smc_chan_free+0x3c/0x6c | lr : smc_chan_free+0x3c/0x6c | Call trace: | smc_chan_free+0x3c/0x6c | idr_for_each+0x68/0xf8 | scmi_cleanup_channels.isra.0+0x2c/0x58 | scmi_probe+0x434/0x734 | platform_probe+0x68/0xd8 | really_probe+0x110/0x27c | __driver_probe_device+0x78/0x12c | driver_probe_device+0x3c/0x118 | __driver_attach+0x74/0x128 | bus_for_each_dev+0x78/0xe0 | driver_attach+0x24/0x30 | bus_add_driver+0xe4/0x1e8 | driver_register+0x60/0x128 | __platform_driver_register+0x28/0x34 | scmi_driver_init+0x84/0xc0 | do_one_initcall+0x78/0x33c | kernel_init_freeable+0x2b8/0x51c | kernel_init+0x24/0x130 | ret_from_fork+0x10/0x20 | Code: f0004701 910a0021 aa1403e5 97b91c70 (b9400280) | ---[ end trace 0000000000000000 ]--- Simply check for the struct pointer being NULL before trying to access its members, to avoid this situation. This was found when a transport doesn't really work (for instance no SMC service), the probe routines then tries to clean up, and triggers a crash.
CVE-2024-26892 In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix use-after-free in free_irq() From commit a304e1b82808 ("[PATCH] Debug shared irqs"), there is a test to make sure the shared irq handler should be able to handle the unexpected event after deregistration. For this case, let's apply MT76_REMOVED flag to indicate the device was removed and do not run into the resource access anymore. BUG: KASAN: use-after-free in mt7921_irq_handler+0xd8/0x100 [mt7921e] Read of size 8 at addr ffff88824a7d3b78 by task rmmod/11115 CPU: 28 PID: 11115 Comm: rmmod Tainted: G W L 5.17.0 #10 Hardware name: Micro-Star International Co., Ltd. MS-7D73/MPG B650I EDGE WIFI (MS-7D73), BIOS 1.81 01/05/2024 Call Trace: <TASK> dump_stack_lvl+0x6f/0xa0 print_address_description.constprop.0+0x1f/0x190 ? mt7921_irq_handler+0xd8/0x100 [mt7921e] ? mt7921_irq_handler+0xd8/0x100 [mt7921e] kasan_report.cold+0x7f/0x11b ? mt7921_irq_handler+0xd8/0x100 [mt7921e] mt7921_irq_handler+0xd8/0x100 [mt7921e] free_irq+0x627/0xaa0 devm_free_irq+0x94/0xd0 ? devm_request_any_context_irq+0x160/0x160 ? kobject_put+0x18d/0x4a0 mt7921_pci_remove+0x153/0x190 [mt7921e] pci_device_remove+0xa2/0x1d0 __device_release_driver+0x346/0x6e0 driver_detach+0x1ef/0x2c0 bus_remove_driver+0xe7/0x2d0 ? __check_object_size+0x57/0x310 pci_unregister_driver+0x26/0x250 __do_sys_delete_module+0x307/0x510 ? free_module+0x6a0/0x6a0 ? fpregs_assert_state_consistent+0x4b/0xb0 ? rcu_read_lock_sched_held+0x10/0x70 ? syscall_enter_from_user_mode+0x20/0x70 ? trace_hardirqs_on+0x1c/0x130 do_syscall_64+0x5c/0x80 ? trace_hardirqs_on_prepare+0x72/0x160 ? do_syscall_64+0x68/0x80 ? trace_hardirqs_on_prepare+0x72/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xae
CVE-2024-26891 In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Don't issue ATS Invalidation request when device is disconnected For those endpoint devices connect to system via hotplug capable ports, users could request a hot reset to the device by flapping device's link through setting the slot's link control register, as pciehp_ist() DLLSC interrupt sequence response, pciehp will unload the device driver and then power it off. thus cause an IOMMU device-TLB invalidation (Intel VT-d spec, or ATS Invalidation in PCIe spec r6.1) request for non-existence target device to be sent and deadly loop to retry that request after ITE fault triggered in interrupt context. That would cause following continuous hard lockup warning and system hang [ 4211.433662] pcieport 0000:17:01.0: pciehp: Slot(108): Link Down [ 4211.433664] pcieport 0000:17:01.0: pciehp: Slot(108): Card not present [ 4223.822591] NMI watchdog: Watchdog detected hard LOCKUP on cpu 144 [ 4223.822622] CPU: 144 PID: 1422 Comm: irq/57-pciehp Kdump: loaded Tainted: G S OE kernel version xxxx [ 4223.822623] Hardware name: vendorname xxxx 666-106, BIOS 01.01.02.03.01 05/15/2023 [ 4223.822623] RIP: 0010:qi_submit_sync+0x2c0/0x490 [ 4223.822624] Code: 48 be 00 00 00 00 00 08 00 00 49 85 74 24 20 0f 95 c1 48 8b 57 10 83 c1 04 83 3c 1a 03 0f 84 a2 01 00 00 49 8b 04 24 8b 70 34 <40> f6 c6 1 0 74 17 49 8b 04 24 8b 80 80 00 00 00 89 c2 d3 fa 41 39 [ 4223.822624] RSP: 0018:ffffc4f074f0bbb8 EFLAGS: 00000093 [ 4223.822625] RAX: ffffc4f040059000 RBX: 0000000000000014 RCX: 0000000000000005 [ 4223.822625] RDX: ffff9f3841315800 RSI: 0000000000000000 RDI: ffff9f38401a8340 [ 4223.822625] RBP: ffff9f38401a8340 R08: ffffc4f074f0bc00 R09: 0000000000000000 [ 4223.822626] R10: 0000000000000010 R11: 0000000000000018 R12: ffff9f384005e200 [ 4223.822626] R13: 0000000000000004 R14: 0000000000000046 R15: 0000000000000004 [ 4223.822626] FS: 0000000000000000(0000) GS:ffffa237ae400000(0000) knlGS:0000000000000000 [ 4223.822627] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4223.822627] CR2: 00007ffe86515d80 CR3: 000002fd3000a001 CR4: 0000000000770ee0 [ 4223.822627] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4223.822628] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 4223.822628] PKRU: 55555554 [ 4223.822628] Call Trace: [ 4223.822628] qi_flush_dev_iotlb+0xb1/0xd0 [ 4223.822628] __dmar_remove_one_dev_info+0x224/0x250 [ 4223.822629] dmar_remove_one_dev_info+0x3e/0x50 [ 4223.822629] intel_iommu_release_device+0x1f/0x30 [ 4223.822629] iommu_release_device+0x33/0x60 [ 4223.822629] iommu_bus_notifier+0x7f/0x90 [ 4223.822630] blocking_notifier_call_chain+0x60/0x90 [ 4223.822630] device_del+0x2e5/0x420 [ 4223.822630] pci_remove_bus_device+0x70/0x110 [ 4223.822630] pciehp_unconfigure_device+0x7c/0x130 [ 4223.822631] pciehp_disable_slot+0x6b/0x100 [ 4223.822631] pciehp_handle_presence_or_link_change+0xd8/0x320 [ 4223.822631] pciehp_ist+0x176/0x180 [ 4223.822631] ? irq_finalize_oneshot.part.50+0x110/0x110 [ 4223.822632] irq_thread_fn+0x19/0x50 [ 4223.822632] irq_thread+0x104/0x190 [ 4223.822632] ? irq_forced_thread_fn+0x90/0x90 [ 4223.822632] ? irq_thread_check_affinity+0xe0/0xe0 [ 4223.822633] kthread+0x114/0x130 [ 4223.822633] ? __kthread_cancel_work+0x40/0x40 [ 4223.822633] ret_from_fork+0x1f/0x30 [ 4223.822633] Kernel panic - not syncing: Hard LOCKUP [ 4223.822634] CPU: 144 PID: 1422 Comm: irq/57-pciehp Kdump: loaded Tainted: G S OE kernel version xxxx [ 4223.822634] Hardware name: vendorname xxxx 666-106, BIOS 01.01.02.03.01 05/15/2023 [ 4223.822634] Call Trace: [ 4223.822634] <NMI> [ 4223.822635] dump_stack+0x6d/0x88 [ 4223.822635] panic+0x101/0x2d0 [ 4223.822635] ? ret_from_fork+0x11/0x30 [ 4223.822635] nmi_panic.cold.14+0xc/0xc [ 4223.822636] watchdog_overflow_callback.cold.8+0x6d/0x81 [ 4223.822636] __perf_event_overflow+0x4f/0xf0 [ 4223.822636] handle_pmi_common ---truncated---
CVE-2024-26890 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btrtl: fix out of bounds memory access The problem is detected by KASAN. btrtl driver uses private hci data to store 'struct btrealtek_data'. If btrtl driver is used with btusb, then memory for private hci data is allocated in btusb. But no private data is allocated after hci_dev, when btrtl is used with hci_h5. This commit adds memory allocation for hci_h5 case. ================================================================== BUG: KASAN: slab-out-of-bounds in btrtl_initialize+0x6cc/0x958 [btrtl] Write of size 8 at addr ffff00000f5a5748 by task kworker/u9:0/76 Hardware name: Pine64 PinePhone (1.2) (DT) Workqueue: hci0 hci_power_on [bluetooth] Call trace: dump_backtrace+0x9c/0x128 show_stack+0x20/0x38 dump_stack_lvl+0x48/0x60 print_report+0xf8/0x5d8 kasan_report+0x90/0xd0 __asan_store8+0x9c/0xc0 [btrtl] h5_btrtl_setup+0xd0/0x2f8 [hci_uart] h5_setup+0x50/0x80 [hci_uart] hci_uart_setup+0xd4/0x260 [hci_uart] hci_dev_open_sync+0x1cc/0xf68 [bluetooth] hci_dev_do_open+0x34/0x90 [bluetooth] hci_power_on+0xc4/0x3c8 [bluetooth] process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Allocated by task 53: kasan_save_stack+0x3c/0x68 kasan_save_track+0x20/0x40 kasan_save_alloc_info+0x68/0x78 __kasan_kmalloc+0xd4/0xd8 __kmalloc+0x1b4/0x3b0 hci_alloc_dev_priv+0x28/0xa58 [bluetooth] hci_uart_register_device+0x118/0x4f8 [hci_uart] h5_serdev_probe+0xf4/0x178 [hci_uart] serdev_drv_probe+0x54/0xa0 really_probe+0x254/0x588 __driver_probe_device+0xc4/0x210 driver_probe_device+0x64/0x160 __driver_attach_async_helper+0x88/0x158 async_run_entry_fn+0xd0/0x388 process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Last potentially related work creation: kasan_save_stack+0x3c/0x68 __kasan_record_aux_stack+0xb0/0x150 kasan_record_aux_stack_noalloc+0x14/0x20 __queue_work+0x33c/0x960 queue_work_on+0x98/0xc0 hci_recv_frame+0xc8/0x1e8 [bluetooth] h5_complete_rx_pkt+0x2c8/0x800 [hci_uart] h5_rx_payload+0x98/0xb8 [hci_uart] h5_recv+0x158/0x3d8 [hci_uart] hci_uart_receive_buf+0xa0/0xe8 [hci_uart] ttyport_receive_buf+0xac/0x178 flush_to_ldisc+0x130/0x2c8 process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Second to last potentially related work creation: kasan_save_stack+0x3c/0x68 __kasan_record_aux_stack+0xb0/0x150 kasan_record_aux_stack_noalloc+0x14/0x20 __queue_work+0x788/0x960 queue_work_on+0x98/0xc0 __hci_cmd_sync_sk+0x23c/0x7a0 [bluetooth] __hci_cmd_sync+0x24/0x38 [bluetooth] btrtl_initialize+0x760/0x958 [btrtl] h5_btrtl_setup+0xd0/0x2f8 [hci_uart] h5_setup+0x50/0x80 [hci_uart] hci_uart_setup+0xd4/0x260 [hci_uart] hci_dev_open_sync+0x1cc/0xf68 [bluetooth] hci_dev_do_open+0x34/0x90 [bluetooth] hci_power_on+0xc4/0x3c8 [bluetooth] process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 ==================================================================
CVE-2024-26889 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_core: Fix possible buffer overflow struct hci_dev_info has a fixed size name[8] field so in the event that hdev->name is bigger than that strcpy would attempt to write past its size, so this fixes this problem by switching to use strscpy.
CVE-2024-26888 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: msft: Fix memory leak Fix leaking buffer allocated to send MSFT_OP_LE_MONITOR_ADVERTISEMENT.
CVE-2024-26887 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: Fix memory leak This checks if CONFIG_DEV_COREDUMP is enabled before attempting to clone the skb and also make sure btmtk_process_coredump frees the skb passed following the same logic.
CVE-2024-26886 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: af_bluetooth: Fix deadlock Attemting to do sock_lock on .recvmsg may cause a deadlock as shown bellow, so instead of using sock_sock this uses sk_receive_queue.lock on bt_sock_ioctl to avoid the UAF: INFO: task kworker/u9:1:121 blocked for more than 30 seconds. Not tainted 6.7.6-lemon #183 Workqueue: hci0 hci_rx_work Call Trace: <TASK> __schedule+0x37d/0xa00 schedule+0x32/0xe0 __lock_sock+0x68/0xa0 ? __pfx_autoremove_wake_function+0x10/0x10 lock_sock_nested+0x43/0x50 l2cap_sock_recv_cb+0x21/0xa0 l2cap_recv_frame+0x55b/0x30a0 ? psi_task_switch+0xeb/0x270 ? finish_task_switch.isra.0+0x93/0x2a0 hci_rx_work+0x33a/0x3f0 process_one_work+0x13a/0x2f0 worker_thread+0x2f0/0x410 ? __pfx_worker_thread+0x10/0x10 kthread+0xe0/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK>
CVE-2024-26885 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix DEVMAP_HASH overflow check on 32-bit arches The devmap code allocates a number hash buckets equal to the next power of two of the max_entries value provided when creating the map. When rounding up to the next power of two, the 32-bit variable storing the number of buckets can overflow, and the code checks for overflow by checking if the truncated 32-bit value is equal to 0. However, on 32-bit arches the rounding up itself can overflow mid-way through, because it ends up doing a left-shift of 32 bits on an unsigned long value. If the size of an unsigned long is four bytes, this is undefined behaviour, so there is no guarantee that we'll end up with a nice and tidy 0-value at the end. Syzbot managed to turn this into a crash on arm32 by creating a DEVMAP_HASH with max_entries > 0x80000000 and then trying to update it. Fix this by moving the overflow check to before the rounding up operation.
CVE-2024-26884 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix hashtab overflow check on 32-bit arches The hashtab code relies on roundup_pow_of_two() to compute the number of hash buckets, and contains an overflow check by checking if the resulting value is 0. However, on 32-bit arches, the roundup code itself can overflow by doing a 32-bit left-shift of an unsigned long value, which is undefined behaviour, so it is not guaranteed to truncate neatly. This was triggered by syzbot on the DEVMAP_HASH type, which contains the same check, copied from the hashtab code. So apply the same fix to hashtab, by moving the overflow check to before the roundup.
CVE-2024-26883 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix stackmap overflow check on 32-bit arches The stackmap code relies on roundup_pow_of_two() to compute the number of hash buckets, and contains an overflow check by checking if the resulting value is 0. However, on 32-bit arches, the roundup code itself can overflow by doing a 32-bit left-shift of an unsigned long value, which is undefined behaviour, so it is not guaranteed to truncate neatly. This was triggered by syzbot on the DEVMAP_HASH type, which contains the same check, copied from the hashtab code. The commit in the fixes tag actually attempted to fix this, but the fix did not account for the UB, so the fix only works on CPUs where an overflow does result in a neat truncation to zero, which is not guaranteed. Checking the value before rounding does not have this problem.
CVE-2024-26882 In the Linux kernel, the following vulnerability has been resolved: net: ip_tunnel: make sure to pull inner header in ip_tunnel_rcv() Apply the same fix than ones found in : 8d975c15c0cd ("ip6_tunnel: make sure to pull inner header in __ip6_tnl_rcv()") 1ca1ba465e55 ("geneve: make sure to pull inner header in geneve_rx()") We have to save skb->network_header in a temporary variable in order to be able to recompute the network_header pointer after a pskb_inet_may_pull() call. pskb_inet_may_pull() makes sure the needed headers are in skb->head. syzbot reported: BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] BUG: KMSAN: uninit-value in ip_tunnel_rcv+0xed9/0x2ed0 net/ipv4/ip_tunnel.c:409 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] ip_tunnel_rcv+0xed9/0x2ed0 net/ipv4/ip_tunnel.c:409 __ipgre_rcv+0x9bc/0xbc0 net/ipv4/ip_gre.c:389 ipgre_rcv net/ipv4/ip_gre.c:411 [inline] gre_rcv+0x423/0x19f0 net/ipv4/ip_gre.c:447 gre_rcv+0x2a4/0x390 net/ipv4/gre_demux.c:163 ip_protocol_deliver_rcu+0x264/0x1300 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x2b8/0x440 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:314 [inline] ip_local_deliver+0x21f/0x490 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:461 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip_rcv+0x46f/0x760 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5534 [inline] __netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5648 netif_receive_skb_internal net/core/dev.c:5734 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5793 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1556 tun_get_user+0x53b9/0x66e0 drivers/net/tun.c:2009 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2055 call_write_iter include/linux/fs.h:2087 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb6b/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: __alloc_pages+0x9a6/0xe00 mm/page_alloc.c:4590 alloc_pages_mpol+0x62b/0x9d0 mm/mempolicy.c:2133 alloc_pages+0x1be/0x1e0 mm/mempolicy.c:2204 skb_page_frag_refill+0x2bf/0x7c0 net/core/sock.c:2909 tun_build_skb drivers/net/tun.c:1686 [inline] tun_get_user+0xe0a/0x66e0 drivers/net/tun.c:1826 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2055 call_write_iter include/linux/fs.h:2087 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb6b/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b
CVE-2024-26881 In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when 1588 is received on HIP08 devices The HIP08 devices does not register the ptp devices, so the hdev->ptp is NULL, but the hardware can receive 1588 messages, and set the HNS3_RXD_TS_VLD_B bit, so, if match this case, the access of hdev->ptp->flags will cause a kernel crash: [ 5888.946472] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 [ 5888.946475] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 ... [ 5889.266118] pc : hclge_ptp_get_rx_hwts+0x40/0x170 [hclge] [ 5889.272612] lr : hclge_ptp_get_rx_hwts+0x34/0x170 [hclge] [ 5889.279101] sp : ffff800012c3bc50 [ 5889.283516] x29: ffff800012c3bc50 x28: ffff2040002be040 [ 5889.289927] x27: ffff800009116484 x26: 0000000080007500 [ 5889.296333] x25: 0000000000000000 x24: ffff204001c6f000 [ 5889.302738] x23: ffff204144f53c00 x22: 0000000000000000 [ 5889.309134] x21: 0000000000000000 x20: ffff204004220080 [ 5889.315520] x19: ffff204144f53c00 x18: 0000000000000000 [ 5889.321897] x17: 0000000000000000 x16: 0000000000000000 [ 5889.328263] x15: 0000004000140ec8 x14: 0000000000000000 [ 5889.334617] x13: 0000000000000000 x12: 00000000010011df [ 5889.340965] x11: bbfeff4d22000000 x10: 0000000000000000 [ 5889.347303] x9 : ffff800009402124 x8 : 0200f78811dfbb4d [ 5889.353637] x7 : 2200000000191b01 x6 : ffff208002a7d480 [ 5889.359959] x5 : 0000000000000000 x4 : 0000000000000000 [ 5889.366271] x3 : 0000000000000000 x2 : 0000000000000000 [ 5889.372567] x1 : 0000000000000000 x0 : ffff20400095c080 [ 5889.378857] Call trace: [ 5889.382285] hclge_ptp_get_rx_hwts+0x40/0x170 [hclge] [ 5889.388304] hns3_handle_bdinfo+0x324/0x410 [hns3] [ 5889.394055] hns3_handle_rx_bd+0x60/0x150 [hns3] [ 5889.399624] hns3_clean_rx_ring+0x84/0x170 [hns3] [ 5889.405270] hns3_nic_common_poll+0xa8/0x220 [hns3] [ 5889.411084] napi_poll+0xcc/0x264 [ 5889.415329] net_rx_action+0xd4/0x21c [ 5889.419911] __do_softirq+0x130/0x358 [ 5889.424484] irq_exit+0x134/0x154 [ 5889.428700] __handle_domain_irq+0x88/0xf0 [ 5889.433684] gic_handle_irq+0x78/0x2c0 [ 5889.438319] el1_irq+0xb8/0x140 [ 5889.442354] arch_cpu_idle+0x18/0x40 [ 5889.446816] default_idle_call+0x5c/0x1c0 [ 5889.451714] cpuidle_idle_call+0x174/0x1b0 [ 5889.456692] do_idle+0xc8/0x160 [ 5889.460717] cpu_startup_entry+0x30/0xfc [ 5889.465523] secondary_start_kernel+0x158/0x1ec [ 5889.470936] Code: 97ffab78 f9411c14 91408294 f9457284 (f9400c80) [ 5889.477950] SMP: stopping secondary CPUs [ 5890.514626] SMP: failed to stop secondary CPUs 0-69,71-95 [ 5890.522951] Starting crashdump kernel...
CVE-2024-26880 In the Linux kernel, the following vulnerability has been resolved: dm: call the resume method on internal suspend There is this reported crash when experimenting with the lvm2 testsuite. The list corruption is caused by the fact that the postsuspend and resume methods were not paired correctly; there were two consecutive calls to the origin_postsuspend function. The second call attempts to remove the "hash_list" entry from a list, while it was already removed by the first call. Fix __dm_internal_resume so that it calls the preresume and resume methods of the table's targets. If a preresume method of some target fails, we are in a tricky situation. We can't return an error because dm_internal_resume isn't supposed to return errors. We can't return success, because then the "resume" and "postsuspend" methods would not be paired correctly. So, we set the DMF_SUSPENDED flag and we fake normal suspend - it may confuse userspace tools, but it won't cause a kernel crash. ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:56! invalid opcode: 0000 [#1] PREEMPT SMP CPU: 1 PID: 8343 Comm: dmsetup Not tainted 6.8.0-rc6 #4 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 RIP: 0010:__list_del_entry_valid_or_report+0x77/0xc0 <snip> RSP: 0018:ffff8881b831bcc0 EFLAGS: 00010282 RAX: 000000000000004e RBX: ffff888143b6eb80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffff819053d0 RDI: 00000000ffffffff RBP: ffff8881b83a3400 R08: 00000000fffeffff R09: 0000000000000058 R10: 0000000000000000 R11: ffffffff81a24080 R12: 0000000000000001 R13: ffff88814538e000 R14: ffff888143bc6dc0 R15: ffffffffa02e4bb0 FS: 00000000f7c0f780(0000) GS:ffff8893f0a40000(0000) knlGS:0000000000000000 CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033 CR2: 0000000057fb5000 CR3: 0000000143474000 CR4: 00000000000006b0 Call Trace: <TASK> ? die+0x2d/0x80 ? do_trap+0xeb/0xf0 ? __list_del_entry_valid_or_report+0x77/0xc0 ? do_error_trap+0x60/0x80 ? __list_del_entry_valid_or_report+0x77/0xc0 ? exc_invalid_op+0x49/0x60 ? __list_del_entry_valid_or_report+0x77/0xc0 ? asm_exc_invalid_op+0x16/0x20 ? table_deps+0x1b0/0x1b0 [dm_mod] ? __list_del_entry_valid_or_report+0x77/0xc0 origin_postsuspend+0x1a/0x50 [dm_snapshot] dm_table_postsuspend_targets+0x34/0x50 [dm_mod] dm_suspend+0xd8/0xf0 [dm_mod] dev_suspend+0x1f2/0x2f0 [dm_mod] ? table_deps+0x1b0/0x1b0 [dm_mod] ctl_ioctl+0x300/0x5f0 [dm_mod] dm_compat_ctl_ioctl+0x7/0x10 [dm_mod] __x64_compat_sys_ioctl+0x104/0x170 do_syscall_64+0x184/0x1b0 entry_SYSCALL_64_after_hwframe+0x46/0x4e RIP: 0033:0xf7e6aead <snip> ---[ end trace 0000000000000000 ]---
CVE-2024-26879 In the Linux kernel, the following vulnerability has been resolved: clk: meson: Add missing clocks to axg_clk_regmaps Some clocks were missing from axg_clk_regmaps, which caused kernel panic during cat /sys/kernel/debug/clk/clk_summary [ 57.349402] Unable to handle kernel NULL pointer dereference at virtual address 00000000000001fc ... [ 57.430002] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 57.436900] pc : regmap_read+0x1c/0x88 [ 57.440608] lr : clk_regmap_gate_is_enabled+0x3c/0xb0 [ 57.445611] sp : ffff800082f1b690 [ 57.448888] x29: ffff800082f1b690 x28: 0000000000000000 x27: ffff800080eb9a70 [ 57.455961] x26: 0000000000000007 x25: 0000000000000016 x24: 0000000000000000 [ 57.463033] x23: ffff800080e8b488 x22: 0000000000000015 x21: ffff00000e7e7000 [ 57.470106] x20: ffff00000400ec00 x19: 0000000000000000 x18: ffffffffffffffff [ 57.477178] x17: 0000000000000000 x16: 0000000000000000 x15: ffff0000042a3000 [ 57.484251] x14: 0000000000000000 x13: ffff0000042a2fec x12: 0000000005f5e100 [ 57.491323] x11: abcc77118461cefd x10: 0000000000000020 x9 : ffff8000805e4b24 [ 57.498396] x8 : ffff0000028063c0 x7 : ffff800082f1b710 x6 : ffff800082f1b710 [ 57.505468] x5 : 00000000ffffffd0 x4 : ffff800082f1b6e0 x3 : 0000000000001000 [ 57.512541] x2 : ffff800082f1b6e4 x1 : 000000000000012c x0 : 0000000000000000 [ 57.519615] Call trace: [ 57.522030] regmap_read+0x1c/0x88 [ 57.525393] clk_regmap_gate_is_enabled+0x3c/0xb0 [ 57.530050] clk_core_is_enabled+0x44/0x120 [ 57.534190] clk_summary_show_subtree+0x154/0x2f0 [ 57.538847] clk_summary_show_subtree+0x220/0x2f0 [ 57.543505] clk_summary_show_subtree+0x220/0x2f0 [ 57.548162] clk_summary_show_subtree+0x220/0x2f0 [ 57.552820] clk_summary_show_subtree+0x220/0x2f0 [ 57.557477] clk_summary_show_subtree+0x220/0x2f0 [ 57.562135] clk_summary_show_subtree+0x220/0x2f0 [ 57.566792] clk_summary_show_subtree+0x220/0x2f0 [ 57.571450] clk_summary_show+0x84/0xb8 [ 57.575245] seq_read_iter+0x1bc/0x4b8 [ 57.578954] seq_read+0x8c/0xd0 [ 57.582059] full_proxy_read+0x68/0xc8 [ 57.585767] vfs_read+0xb0/0x268 [ 57.588959] ksys_read+0x70/0x108 [ 57.592236] __arm64_sys_read+0x24/0x38 [ 57.596031] invoke_syscall+0x50/0x128 [ 57.599740] el0_svc_common.constprop.0+0x48/0xf8 [ 57.604397] do_el0_svc+0x28/0x40 [ 57.607675] el0_svc+0x34/0xb8 [ 57.610694] el0t_64_sync_handler+0x13c/0x158 [ 57.615006] el0t_64_sync+0x190/0x198 [ 57.618635] Code: a9bd7bfd 910003fd a90153f3 aa0003f3 (b941fc00) [ 57.624668] ---[ end trace 0000000000000000 ]--- [jbrunet: add missing Fixes tag]
CVE-2024-26878 In the Linux kernel, the following vulnerability has been resolved: quota: Fix potential NULL pointer dereference Below race may cause NULL pointer dereference P1 P2 dquot_free_inode quota_off drop_dquot_ref remove_dquot_ref dquots = i_dquot(inode) dquots = i_dquot(inode) srcu_read_lock dquots[cnt]) != NULL (1) dquots[type] = NULL (2) spin_lock(&dquots[cnt]->dq_dqb_lock) (3) .... If dquot_free_inode(or other routines) checks inode's quota pointers (1) before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer dereference will be triggered. So let's fix it by using a temporary pointer to avoid this issue.
CVE-2024-26877 In the Linux kernel, the following vulnerability has been resolved: crypto: xilinx - call finalize with bh disabled When calling crypto_finalize_request, BH should be disabled to avoid triggering the following calltrace: ------------[ cut here ]------------ WARNING: CPU: 2 PID: 74 at crypto/crypto_engine.c:58 crypto_finalize_request+0xa0/0x118 Modules linked in: cryptodev(O) CPU: 2 PID: 74 Comm: firmware:zynqmp Tainted: G O 6.8.0-rc1-yocto-standard #323 Hardware name: ZynqMP ZCU102 Rev1.0 (DT) pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : crypto_finalize_request+0xa0/0x118 lr : crypto_finalize_request+0x104/0x118 sp : ffffffc085353ce0 x29: ffffffc085353ce0 x28: 0000000000000000 x27: ffffff8808ea8688 x26: ffffffc081715038 x25: 0000000000000000 x24: ffffff880100db00 x23: ffffff880100da80 x22: 0000000000000000 x21: 0000000000000000 x20: ffffff8805b14000 x19: ffffff880100da80 x18: 0000000000010450 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000003 x13: 0000000000000000 x12: ffffff880100dad0 x11: 0000000000000000 x10: ffffffc0832dcd08 x9 : ffffffc0812416d8 x8 : 00000000000001f4 x7 : ffffffc0830d2830 x6 : 0000000000000001 x5 : ffffffc082091000 x4 : ffffffc082091658 x3 : 0000000000000000 x2 : ffffffc7f9653000 x1 : 0000000000000000 x0 : ffffff8802d20000 Call trace: crypto_finalize_request+0xa0/0x118 crypto_finalize_aead_request+0x18/0x30 zynqmp_handle_aes_req+0xcc/0x388 crypto_pump_work+0x168/0x2d8 kthread_worker_fn+0xfc/0x3a0 kthread+0x118/0x138 ret_from_fork+0x10/0x20 irq event stamp: 40 hardirqs last enabled at (39): [<ffffffc0812416f8>] _raw_spin_unlock_irqrestore+0x70/0xb0 hardirqs last disabled at (40): [<ffffffc08122d208>] el1_dbg+0x28/0x90 softirqs last enabled at (36): [<ffffffc080017dec>] kernel_neon_begin+0x8c/0xf0 softirqs last disabled at (34): [<ffffffc080017dc0>] kernel_neon_begin+0x60/0xf0 ---[ end trace 0000000000000000 ]---
CVE-2024-26876 In the Linux kernel, the following vulnerability has been resolved: drm/bridge: adv7511: fix crash on irq during probe Moved IRQ registration down to end of adv7511_probe(). If an IRQ already is pending during adv7511_probe (before adv7511_cec_init) then cec_received_msg_ts could crash using uninitialized data: Unable to handle kernel read from unreadable memory at virtual address 00000000000003d5 Internal error: Oops: 96000004 [#1] PREEMPT_RT SMP Call trace: cec_received_msg_ts+0x48/0x990 [cec] adv7511_cec_irq_process+0x1cc/0x308 [adv7511] adv7511_irq_process+0xd8/0x120 [adv7511] adv7511_irq_handler+0x1c/0x30 [adv7511] irq_thread_fn+0x30/0xa0 irq_thread+0x14c/0x238 kthread+0x190/0x1a8
CVE-2024-26875 In the Linux kernel, the following vulnerability has been resolved: media: pvrusb2: fix uaf in pvr2_context_set_notify [Syzbot reported] BUG: KASAN: slab-use-after-free in pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35 Read of size 4 at addr ffff888113aeb0d8 by task kworker/1:1/26 CPU: 1 PID: 26 Comm: kworker/1:1 Not tainted 6.8.0-rc1-syzkaller-00046-gf1a27f081c1f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Workqueue: usb_hub_wq hub_event Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd9/0x1b0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:377 [inline] print_report+0xc4/0x620 mm/kasan/report.c:488 kasan_report+0xda/0x110 mm/kasan/report.c:601 pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35 pvr2_context_notify drivers/media/usb/pvrusb2/pvrusb2-context.c:95 [inline] pvr2_context_disconnect+0x94/0xb0 drivers/media/usb/pvrusb2/pvrusb2-context.c:272 Freed by task 906: kasan_save_stack+0x33/0x50 mm/kasan/common.c:47 kasan_save_track+0x14/0x30 mm/kasan/common.c:68 kasan_save_free_info+0x3f/0x60 mm/kasan/generic.c:640 poison_slab_object mm/kasan/common.c:241 [inline] __kasan_slab_free+0x106/0x1b0 mm/kasan/common.c:257 kasan_slab_free include/linux/kasan.h:184 [inline] slab_free_hook mm/slub.c:2121 [inline] slab_free mm/slub.c:4299 [inline] kfree+0x105/0x340 mm/slub.c:4409 pvr2_context_check drivers/media/usb/pvrusb2/pvrusb2-context.c:137 [inline] pvr2_context_thread_func+0x69d/0x960 drivers/media/usb/pvrusb2/pvrusb2-context.c:158 [Analyze] Task A set disconnect_flag = !0, which resulted in Task B's condition being met and releasing mp, leading to this issue. [Fix] Place the disconnect_flag assignment operation after all code in pvr2_context_disconnect() to avoid this issue.
CVE-2024-26874 In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix a null pointer crash in mtk_drm_crtc_finish_page_flip It's possible that mtk_crtc->event is NULL in mtk_drm_crtc_finish_page_flip(). pending_needs_vblank value is set by mtk_crtc->event, but in mtk_drm_crtc_atomic_flush(), it's is not guarded by the same lock in mtk_drm_finish_page_flip(), thus a race condition happens. Consider the following case: CPU1 CPU2 step 1: mtk_drm_crtc_atomic_begin() mtk_crtc->event is not null, step 1: mtk_drm_crtc_atomic_flush: mtk_drm_crtc_update_config( !!mtk_crtc->event) step 2: mtk_crtc_ddp_irq -> mtk_drm_finish_page_flip: lock mtk_crtc->event set to null, pending_needs_vblank set to false unlock pending_needs_vblank set to true, step 2: mtk_crtc_ddp_irq -> mtk_drm_finish_page_flip called again, pending_needs_vblank is still true //null pointer Instead of guarding the entire mtk_drm_crtc_atomic_flush(), it's more efficient to just check if mtk_crtc->event is null before use.
CVE-2024-26873 In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Fix a deadlock issue related to automatic dump If we issue a disabling PHY command, the device attached with it will go offline, if a 2 bit ECC error occurs at the same time, a hung task may be found: [ 4613.652388] INFO: task kworker/u256:0:165233 blocked for more than 120 seconds. [ 4613.666297] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 4613.674809] task:kworker/u256:0 state:D stack: 0 pid:165233 ppid: 2 flags:0x00000208 [ 4613.683959] Workqueue: 0000:74:02.0_disco_q sas_revalidate_domain [libsas] [ 4613.691518] Call trace: [ 4613.694678] __switch_to+0xf8/0x17c [ 4613.698872] __schedule+0x660/0xee0 [ 4613.703063] schedule+0xac/0x240 [ 4613.706994] schedule_timeout+0x500/0x610 [ 4613.711705] __down+0x128/0x36c [ 4613.715548] down+0x240/0x2d0 [ 4613.719221] hisi_sas_internal_abort_timeout+0x1bc/0x260 [hisi_sas_main] [ 4613.726618] sas_execute_internal_abort+0x144/0x310 [libsas] [ 4613.732976] sas_execute_internal_abort_dev+0x44/0x60 [libsas] [ 4613.739504] hisi_sas_internal_task_abort_dev.isra.0+0xbc/0x1b0 [hisi_sas_main] [ 4613.747499] hisi_sas_dev_gone+0x174/0x250 [hisi_sas_main] [ 4613.753682] sas_notify_lldd_dev_gone+0xec/0x2e0 [libsas] [ 4613.759781] sas_unregister_common_dev+0x4c/0x7a0 [libsas] [ 4613.765962] sas_destruct_devices+0xb8/0x120 [libsas] [ 4613.771709] sas_do_revalidate_domain.constprop.0+0x1b8/0x31c [libsas] [ 4613.778930] sas_revalidate_domain+0x60/0xa4 [libsas] [ 4613.784716] process_one_work+0x248/0x950 [ 4613.789424] worker_thread+0x318/0x934 [ 4613.793878] kthread+0x190/0x200 [ 4613.797810] ret_from_fork+0x10/0x18 [ 4613.802121] INFO: task kworker/u256:4:316722 blocked for more than 120 seconds. [ 4613.816026] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 4613.824538] task:kworker/u256:4 state:D stack: 0 pid:316722 ppid: 2 flags:0x00000208 [ 4613.833670] Workqueue: 0000:74:02.0 hisi_sas_rst_work_handler [hisi_sas_main] [ 4613.841491] Call trace: [ 4613.844647] __switch_to+0xf8/0x17c [ 4613.848852] __schedule+0x660/0xee0 [ 4613.853052] schedule+0xac/0x240 [ 4613.856984] schedule_timeout+0x500/0x610 [ 4613.861695] __down+0x128/0x36c [ 4613.865542] down+0x240/0x2d0 [ 4613.869216] hisi_sas_controller_prereset+0x58/0x1fc [hisi_sas_main] [ 4613.876324] hisi_sas_rst_work_handler+0x40/0x8c [hisi_sas_main] [ 4613.883019] process_one_work+0x248/0x950 [ 4613.887732] worker_thread+0x318/0x934 [ 4613.892204] kthread+0x190/0x200 [ 4613.896118] ret_from_fork+0x10/0x18 [ 4613.900423] INFO: task kworker/u256:1:348985 blocked for more than 121 seconds. [ 4613.914341] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 4613.922852] task:kworker/u256:1 state:D stack: 0 pid:348985 ppid: 2 flags:0x00000208 [ 4613.931984] Workqueue: 0000:74:02.0_event_q sas_port_event_worker [libsas] [ 4613.939549] Call trace: [ 4613.942702] __switch_to+0xf8/0x17c [ 4613.946892] __schedule+0x660/0xee0 [ 4613.951083] schedule+0xac/0x240 [ 4613.955015] schedule_timeout+0x500/0x610 [ 4613.959725] wait_for_common+0x200/0x610 [ 4613.964349] wait_for_completion+0x3c/0x5c [ 4613.969146] flush_workqueue+0x198/0x790 [ 4613.973776] sas_porte_broadcast_rcvd+0x1e8/0x320 [libsas] [ 4613.979960] sas_port_event_worker+0x54/0xa0 [libsas] [ 4613.985708] process_one_work+0x248/0x950 [ 4613.990420] worker_thread+0x318/0x934 [ 4613.994868] kthread+0x190/0x200 [ 4613.998800] ret_from_fork+0x10/0x18 This is because when the device goes offline, we obtain the hisi_hba semaphore and send the ABORT_DEV command to the device. However, the internal abort timed out due to the 2 bit ECC error and triggers automatic dump. In addition, since the hisi_hba semaphore has been obtained, the dump cannot be executed and the controller cannot be reset. Therefore, the deadlocks occur on the following circular dependencies ---truncated---
CVE-2024-26872 In the Linux kernel, the following vulnerability has been resolved: RDMA/srpt: Do not register event handler until srpt device is fully setup Upon rare occasions, KASAN reports a use-after-free Write in srpt_refresh_port(). This seems to be because an event handler is registered before the srpt device is fully setup and a race condition upon error may leave a partially setup event handler in place. Instead, only register the event handler after srpt device initialization is complete.
CVE-2024-26871 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix NULL pointer dereference in f2fs_submit_page_write() BUG: kernel NULL pointer dereference, address: 0000000000000014 RIP: 0010:f2fs_submit_page_write+0x6cf/0x780 [f2fs] Call Trace: <TASK> ? show_regs+0x6e/0x80 ? __die+0x29/0x70 ? page_fault_oops+0x154/0x4a0 ? prb_read_valid+0x20/0x30 ? __irq_work_queue_local+0x39/0xd0 ? irq_work_queue+0x36/0x70 ? do_user_addr_fault+0x314/0x6c0 ? exc_page_fault+0x7d/0x190 ? asm_exc_page_fault+0x2b/0x30 ? f2fs_submit_page_write+0x6cf/0x780 [f2fs] ? f2fs_submit_page_write+0x736/0x780 [f2fs] do_write_page+0x50/0x170 [f2fs] f2fs_outplace_write_data+0x61/0xb0 [f2fs] f2fs_do_write_data_page+0x3f8/0x660 [f2fs] f2fs_write_single_data_page+0x5bb/0x7a0 [f2fs] f2fs_write_cache_pages+0x3da/0xbe0 [f2fs] ... It is possible that other threads have added this fio to io->bio and submitted the io->bio before entering f2fs_submit_page_write(). At this point io->bio = NULL. If is_end_zone_blkaddr(sbi, fio->new_blkaddr) of this fio is true, then an NULL pointer dereference error occurs at bio_get(io->bio). The original code for determining zone end was after "out:", which would have missed some fio who is zone end. I've moved this code before "skip:" to make sure it's done for each fio.
CVE-2024-26870 In the Linux kernel, the following vulnerability has been resolved: NFSv4.2: fix nfs4_listxattr kernel BUG at mm/usercopy.c:102 A call to listxattr() with a buffer size = 0 returns the actual size of the buffer needed for a subsequent call. When size > 0, nfs4_listxattr() does not return an error because either generic_listxattr() or nfs4_listxattr_nfs4_label() consumes exactly all the bytes then size is 0 when calling nfs4_listxattr_nfs4_user() which then triggers the following kernel BUG: [ 99.403778] kernel BUG at mm/usercopy.c:102! [ 99.404063] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 99.408463] CPU: 0 PID: 3310 Comm: python3 Not tainted 6.6.0-61.fc40.aarch64 #1 [ 99.415827] Call trace: [ 99.415985] usercopy_abort+0x70/0xa0 [ 99.416227] __check_heap_object+0x134/0x158 [ 99.416505] check_heap_object+0x150/0x188 [ 99.416696] __check_object_size.part.0+0x78/0x168 [ 99.416886] __check_object_size+0x28/0x40 [ 99.417078] listxattr+0x8c/0x120 [ 99.417252] path_listxattr+0x78/0xe0 [ 99.417476] __arm64_sys_listxattr+0x28/0x40 [ 99.417723] invoke_syscall+0x78/0x100 [ 99.417929] el0_svc_common.constprop.0+0x48/0xf0 [ 99.418186] do_el0_svc+0x24/0x38 [ 99.418376] el0_svc+0x3c/0x110 [ 99.418554] el0t_64_sync_handler+0x120/0x130 [ 99.418788] el0t_64_sync+0x194/0x198 [ 99.418994] Code: aa0003e3 d000a3e0 91310000 97f49bdb (d4210000) Issue is reproduced when generic_listxattr() returns 'system.nfs4_acl', thus calling lisxattr() with size = 16 will trigger the bug. Add check on nfs4_listxattr() to return ERANGE error when it is called with size > 0 and the return value is greater than size.
CVE-2024-26869 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to truncate meta inode pages forcely Below race case can cause data corruption: Thread A GC thread - gc_data_segment - ra_data_block - locked meta_inode page - f2fs_inplace_write_data - invalidate_mapping_pages : fail to invalidate meta_inode page due to lock failure or dirty|writeback status - f2fs_submit_page_bio : write last dirty data to old blkaddr - move_data_block - load old data from meta_inode page - f2fs_submit_page_write : write old data to new blkaddr Because invalidate_mapping_pages() will skip invalidating page which has unclear status including locked, dirty, writeback and so on, so we need to use truncate_inode_pages_range() instead of invalidate_mapping_pages() to make sure meta_inode page will be dropped.
CVE-2024-26868 In the Linux kernel, the following vulnerability has been resolved: nfs: fix panic when nfs4_ff_layout_prepare_ds() fails We've been seeing the following panic in production BUG: kernel NULL pointer dereference, address: 0000000000000065 PGD 2f485f067 P4D 2f485f067 PUD 2cc5d8067 PMD 0 RIP: 0010:ff_layout_cancel_io+0x3a/0x90 [nfs_layout_flexfiles] Call Trace: <TASK> ? __die+0x78/0xc0 ? page_fault_oops+0x286/0x380 ? __rpc_execute+0x2c3/0x470 [sunrpc] ? rpc_new_task+0x42/0x1c0 [sunrpc] ? exc_page_fault+0x5d/0x110 ? asm_exc_page_fault+0x22/0x30 ? ff_layout_free_layoutreturn+0x110/0x110 [nfs_layout_flexfiles] ? ff_layout_cancel_io+0x3a/0x90 [nfs_layout_flexfiles] ? ff_layout_cancel_io+0x6f/0x90 [nfs_layout_flexfiles] pnfs_mark_matching_lsegs_return+0x1b0/0x360 [nfsv4] pnfs_error_mark_layout_for_return+0x9e/0x110 [nfsv4] ? ff_layout_send_layouterror+0x50/0x160 [nfs_layout_flexfiles] nfs4_ff_layout_prepare_ds+0x11f/0x290 [nfs_layout_flexfiles] ff_layout_pg_init_write+0xf0/0x1f0 [nfs_layout_flexfiles] __nfs_pageio_add_request+0x154/0x6c0 [nfs] nfs_pageio_add_request+0x26b/0x380 [nfs] nfs_do_writepage+0x111/0x1e0 [nfs] nfs_writepages_callback+0xf/0x30 [nfs] write_cache_pages+0x17f/0x380 ? nfs_pageio_init_write+0x50/0x50 [nfs] ? nfs_writepages+0x6d/0x210 [nfs] ? nfs_writepages+0x6d/0x210 [nfs] nfs_writepages+0x125/0x210 [nfs] do_writepages+0x67/0x220 ? generic_perform_write+0x14b/0x210 filemap_fdatawrite_wbc+0x5b/0x80 file_write_and_wait_range+0x6d/0xc0 nfs_file_fsync+0x81/0x170 [nfs] ? nfs_file_mmap+0x60/0x60 [nfs] __x64_sys_fsync+0x53/0x90 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Inspecting the core with drgn I was able to pull this >>> prog.crashed_thread().stack_trace()[0] #0 at 0xffffffffa079657a (ff_layout_cancel_io+0x3a/0x84) in ff_layout_cancel_io at fs/nfs/flexfilelayout/flexfilelayout.c:2021:27 >>> prog.crashed_thread().stack_trace()[0]['idx'] (u32)1 >>> prog.crashed_thread().stack_trace()[0]['flseg'].mirror_array[1].mirror_ds (struct nfs4_ff_layout_ds *)0xffffffffffffffed This is clear from the stack trace, we call nfs4_ff_layout_prepare_ds() which could error out initializing the mirror_ds, and then we go to clean it all up and our check is only for if (!mirror->mirror_ds). This is inconsistent with the rest of the users of mirror_ds, which have if (IS_ERR_OR_NULL(mirror_ds)) to keep from tripping over this exact scenario. Fix this up in ff_layout_cancel_io() to make sure we don't panic when we get an error. I also spot checked all the other instances of checking mirror_ds and we appear to be doing the correct checks everywhere, only unconditionally dereferencing mirror_ds when we know it would be valid.
CVE-2024-26867 In the Linux kernel, the following vulnerability has been resolved: comedi: comedi_8255: Correct error in subdevice initialization The refactoring done in commit 5c57b1ccecc7 ("comedi: comedi_8255: Rework subdevice initialization functions") to the initialization of the io field of struct subdev_8255_private broke all cards using the drivers/comedi/drivers/comedi_8255.c module. Prior to 5c57b1ccecc7, __subdev_8255_init() initialized the io field in the newly allocated struct subdev_8255_private to the non-NULL callback given to the function, otherwise it used a flag parameter to select between subdev_8255_mmio and subdev_8255_io. The refactoring removed that logic and the flag, as subdev_8255_mm_init() and subdev_8255_io_init() now explicitly pass subdev_8255_mmio and subdev_8255_io respectively to __subdev_8255_init(), only __subdev_8255_init() never sets spriv->io to the supplied callback. That spriv->io is NULL leads to a later BUG: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0010 [#1] SMP PTI CPU: 1 PID: 1210 Comm: systemd-udevd Not tainted 6.7.3-x86_64 #1 Hardware name: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX RIP: 0010:0x0 Code: Unable to access opcode bytes at 0xffffffffffffffd6. RSP: 0018:ffffa3f1c02d7b78 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff91f847aefd00 RCX: 000000000000009b RDX: 0000000000000003 RSI: 0000000000000001 RDI: ffff91f840f6fc00 RBP: ffff91f840f6fc00 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: 000000000000005f R12: 0000000000000000 R13: 0000000000000000 R14: ffffffffc0102498 R15: ffff91f847ce6ba8 FS: 00007f72f4e8f500(0000) GS:ffff91f8d5c80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 000000010540e000 CR4: 00000000000406f0 Call Trace: <TASK> ? __die_body+0x15/0x57 ? page_fault_oops+0x2ef/0x33c ? insert_vmap_area.constprop.0+0xb6/0xd5 ? alloc_vmap_area+0x529/0x5ee ? exc_page_fault+0x15a/0x489 ? asm_exc_page_fault+0x22/0x30 __subdev_8255_init+0x79/0x8d [comedi_8255] pci_8255_auto_attach+0x11a/0x139 [8255_pci] comedi_auto_config+0xac/0x117 [comedi] ? __pfx___driver_attach+0x10/0x10 pci_device_probe+0x88/0xf9 really_probe+0x101/0x248 __driver_probe_device+0xbb/0xed driver_probe_device+0x1a/0x72 __driver_attach+0xd4/0xed bus_for_each_dev+0x76/0xb8 bus_add_driver+0xbe/0x1be driver_register+0x9a/0xd8 comedi_pci_driver_register+0x28/0x48 [comedi_pci] ? __pfx_pci_8255_driver_init+0x10/0x10 [8255_pci] do_one_initcall+0x72/0x183 do_init_module+0x5b/0x1e8 init_module_from_file+0x86/0xac __do_sys_finit_module+0x151/0x218 do_syscall_64+0x72/0xdb entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7f72f50a0cb9 Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 47 71 0c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffd47e512d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 RAX: ffffffffffffffda RBX: 0000562dd06ae070 RCX: 00007f72f50a0cb9 RDX: 0000000000000000 RSI: 00007f72f52d32df RDI: 000000000000000e RBP: 0000000000000000 R08: 00007f72f5168b20 R09: 0000000000000000 R10: 0000000000000050 R11: 0000000000000246 R12: 00007f72f52d32df R13: 0000000000020000 R14: 0000562dd06785c0 R15: 0000562dcfd0e9a8 </TASK> Modules linked in: 8255_pci(+) comedi_8255 comedi_pci comedi intel_gtt e100(+) acpi_cpufreq rtc_cmos usbhid CR2: 0000000000000000 ---[ end trace 0000000000000000 ]--- RIP: 0010:0x0 Code: Unable to access opcode bytes at 0xffffffffffffffd6. RSP: 0018:ffffa3f1c02d7b78 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff91f847aefd00 RCX: 000000000000009b RDX: 0000000000000003 RSI: 0000000000000001 RDI: ffff91f840f6fc00 RBP: ffff91f840f6fc00 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: 000000000000005f R12: 0000000000000000 R13: 0000000000000000 R14: ffffffffc0102498 R15: ffff91f847ce6ba8 FS: ---truncated---
CVE-2024-26866 In the Linux kernel, the following vulnerability has been resolved: spi: lpspi: Avoid potential use-after-free in probe() fsl_lpspi_probe() is allocating/disposing memory manually with spi_alloc_host()/spi_alloc_target(), but uses devm_spi_register_controller(). In case of error after the latter call the memory will be explicitly freed in the probe function by spi_controller_put() call, but used afterwards by "devm" management outside probe() (spi_unregister_controller() <- devm_spi_unregister() below). Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070 ... Call trace: kernfs_find_ns kernfs_find_and_get_ns sysfs_remove_group sysfs_remove_groups device_remove_attrs device_del spi_unregister_controller devm_spi_unregister release_nodes devres_release_all really_probe driver_probe_device __device_attach_driver bus_for_each_drv __device_attach device_initial_probe bus_probe_device deferred_probe_work_func process_one_work worker_thread kthread ret_from_fork
CVE-2024-26865 In the Linux kernel, the following vulnerability has been resolved: rds: tcp: Fix use-after-free of net in reqsk_timer_handler(). syzkaller reported a warning of netns tracker [0] followed by KASAN splat [1] and another ref tracker warning [1]. syzkaller could not find a repro, but in the log, the only suspicious sequence was as follows: 18:26:22 executing program 1: r0 = socket$inet6_mptcp(0xa, 0x1, 0x106) ... connect$inet6(r0, &(0x7f0000000080)={0xa, 0x4001, 0x0, @loopback}, 0x1c) (async) The notable thing here is 0x4001 in connect(), which is RDS_TCP_PORT. So, the scenario would be: 1. unshare(CLONE_NEWNET) creates a per netns tcp listener in rds_tcp_listen_init(). 2. syz-executor connect()s to it and creates a reqsk. 3. syz-executor exit()s immediately. 4. netns is dismantled. [0] 5. reqsk timer is fired, and UAF happens while freeing reqsk. [1] 6. listener is freed after RCU grace period. [2] Basically, reqsk assumes that the listener guarantees netns safety until all reqsk timers are expired by holding the listener's refcount. However, this was not the case for kernel sockets. Commit 740ea3c4a0b2 ("tcp: Clean up kernel listener's reqsk in inet_twsk_purge()") fixed this issue only for per-netns ehash. Let's apply the same fix for the global ehash. [0]: ref_tracker: net notrefcnt@0000000065449cc3 has 1/1 users at sk_alloc (./include/net/net_namespace.h:337 net/core/sock.c:2146) inet6_create (net/ipv6/af_inet6.c:192 net/ipv6/af_inet6.c:119) __sock_create (net/socket.c:1572) rds_tcp_listen_init (net/rds/tcp_listen.c:279) rds_tcp_init_net (net/rds/tcp.c:577) ops_init (net/core/net_namespace.c:137) setup_net (net/core/net_namespace.c:340) copy_net_ns (net/core/net_namespace.c:497) create_new_namespaces (kernel/nsproxy.c:110) unshare_nsproxy_namespaces (kernel/nsproxy.c:228 (discriminator 4)) ksys_unshare (kernel/fork.c:3429) __x64_sys_unshare (kernel/fork.c:3496) do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129) ... WARNING: CPU: 0 PID: 27 at lib/ref_tracker.c:179 ref_tracker_dir_exit (lib/ref_tracker.c:179) [1]: BUG: KASAN: slab-use-after-free in inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966) Read of size 8 at addr ffff88801b370400 by task swapper/0/0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1)) print_report (mm/kasan/report.c:378 mm/kasan/report.c:488) kasan_report (mm/kasan/report.c:603) inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966) reqsk_timer_handler (net/ipv4/inet_connection_sock.c:979 net/ipv4/inet_connection_sock.c:1092) call_timer_fn (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/timer.h:127 kernel/time/timer.c:1701) __run_timers.part.0 (kernel/time/timer.c:1752 kernel/time/timer.c:2038) run_timer_softirq (kernel/time/timer.c:2053) __do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554) irq_exit_rcu (kernel/softirq.c:427 kernel/softirq.c:632 kernel/softirq.c:644) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1076 (discriminator 14)) </IRQ> Allocated by task 258 on cpu 0 at 83.612050s: kasan_save_stack (mm/kasan/common.c:48) kasan_save_track (mm/kasan/common.c:68) __kasan_slab_alloc (mm/kasan/common.c:343) kmem_cache_alloc (mm/slub.c:3813 mm/slub.c:3860 mm/slub.c:3867) copy_net_ns (./include/linux/slab.h:701 net/core/net_namespace.c:421 net/core/net_namespace.c:480) create_new_namespaces (kernel/nsproxy.c:110) unshare_nsproxy_name ---truncated---
CVE-2024-26864 In the Linux kernel, the following vulnerability has been resolved: tcp: Fix refcnt handling in __inet_hash_connect(). syzbot reported a warning in sk_nulls_del_node_init_rcu(). The commit 66b60b0c8c4a ("dccp/tcp: Unhash sk from ehash for tb2 alloc failure after check_estalblished().") tried to fix an issue that an unconnected socket occupies an ehash entry when bhash2 allocation fails. In such a case, we need to revert changes done by check_established(), which does not hold refcnt when inserting socket into ehash. So, to revert the change, we need to __sk_nulls_add_node_rcu() instead of sk_nulls_add_node_rcu(). Otherwise, sock_put() will cause refcnt underflow and leak the socket. [0]: WARNING: CPU: 0 PID: 23948 at include/net/sock.h:799 sk_nulls_del_node_init_rcu+0x166/0x1a0 include/net/sock.h:799 Modules linked in: CPU: 0 PID: 23948 Comm: syz-executor.2 Not tainted 6.8.0-rc6-syzkaller-00159-gc055fc00c07b #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:sk_nulls_del_node_init_rcu+0x166/0x1a0 include/net/sock.h:799 Code: e8 7f 71 c6 f7 83 fb 02 7c 25 e8 35 6d c6 f7 4d 85 f6 0f 95 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 1b 6d c6 f7 90 <0f> 0b 90 eb b2 e8 10 6d c6 f7 4c 89 e7 be 04 00 00 00 e8 63 e7 d2 RSP: 0018:ffffc900032d7848 EFLAGS: 00010246 RAX: ffffffff89cd0035 RBX: 0000000000000001 RCX: 0000000000040000 RDX: ffffc90004de1000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: 1ffff1100439ac26 R08: ffffffff89ccffe3 R09: 1ffff1100439ac28 R10: dffffc0000000000 R11: ffffed100439ac29 R12: ffff888021cd6140 R13: dffffc0000000000 R14: ffff88802a9bf5c0 R15: ffff888021cd6130 FS: 00007f3b823f16c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3b823f0ff8 CR3: 000000004674a000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __inet_hash_connect+0x140f/0x20b0 net/ipv4/inet_hashtables.c:1139 dccp_v6_connect+0xcb9/0x1480 net/dccp/ipv6.c:956 __inet_stream_connect+0x262/0xf30 net/ipv4/af_inet.c:678 inet_stream_connect+0x65/0xa0 net/ipv4/af_inet.c:749 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f3b8167dda9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f3b823f10c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002a RAX: ffffffffffffffda RBX: 00007f3b817abf80 RCX: 00007f3b8167dda9 RDX: 000000000000001c RSI: 0000000020000040 RDI: 0000000000000003 RBP: 00007f3b823f1120 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 000000000000000b R14: 00007f3b817abf80 R15: 00007ffd3beb57b8 </TASK>
CVE-2024-26863 In the Linux kernel, the following vulnerability has been resolved: hsr: Fix uninit-value access in hsr_get_node() KMSAN reported the following uninit-value access issue [1]: ===================================================== BUG: KMSAN: uninit-value in hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246 hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246 fill_frame_info net/hsr/hsr_forward.c:577 [inline] hsr_forward_skb+0xe12/0x30e0 net/hsr/hsr_forward.c:615 hsr_dev_xmit+0x1a1/0x270 net/hsr/hsr_device.c:223 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564 __dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3087 [inline] packet_sendmsg+0x8b1d/0x9f30 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] __sys_sendto+0x735/0xa10 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1c0 net/socket.c:2199 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560 __alloc_skb+0x318/0x740 net/core/skbuff.c:651 alloc_skb include/linux/skbuff.h:1286 [inline] alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334 sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2787 packet_alloc_skb net/packet/af_packet.c:2936 [inline] packet_snd net/packet/af_packet.c:3030 [inline] packet_sendmsg+0x70e8/0x9f30 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] __sys_sendto+0x735/0xa10 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1c0 net/socket.c:2199 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b CPU: 1 PID: 5033 Comm: syz-executor334 Not tainted 6.7.0-syzkaller-00562-g9f8413c4a66f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 ===================================================== If the packet type ID field in the Ethernet header is either ETH_P_PRP or ETH_P_HSR, but it is not followed by an HSR tag, hsr_get_skb_sequence_nr() reads an invalid value as a sequence number. This causes the above issue. This patch fixes the issue by returning NULL if the Ethernet header is not followed by an HSR tag.
CVE-2024-26862 In the Linux kernel, the following vulnerability has been resolved: packet: annotate data-races around ignore_outgoing ignore_outgoing is read locklessly from dev_queue_xmit_nit() and packet_getsockopt() Add appropriate READ_ONCE()/WRITE_ONCE() annotations. syzbot reported: BUG: KCSAN: data-race in dev_queue_xmit_nit / packet_setsockopt write to 0xffff888107804542 of 1 bytes by task 22618 on cpu 0: packet_setsockopt+0xd83/0xfd0 net/packet/af_packet.c:4003 do_sock_setsockopt net/socket.c:2311 [inline] __sys_setsockopt+0x1d8/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0x66/0x80 net/socket.c:2340 do_syscall_64+0xd3/0x1d0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 read to 0xffff888107804542 of 1 bytes by task 27 on cpu 1: dev_queue_xmit_nit+0x82/0x620 net/core/dev.c:2248 xmit_one net/core/dev.c:3527 [inline] dev_hard_start_xmit+0xcc/0x3f0 net/core/dev.c:3547 __dev_queue_xmit+0xf24/0x1dd0 net/core/dev.c:4335 dev_queue_xmit include/linux/netdevice.h:3091 [inline] batadv_send_skb_packet+0x264/0x300 net/batman-adv/send.c:108 batadv_send_broadcast_skb+0x24/0x30 net/batman-adv/send.c:127 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:392 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:420 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x3f0/0x4b0 net/batman-adv/bat_iv_ogm.c:1700 process_one_work kernel/workqueue.c:3254 [inline] process_scheduled_works+0x465/0x990 kernel/workqueue.c:3335 worker_thread+0x526/0x730 kernel/workqueue.c:3416 kthread+0x1d1/0x210 kernel/kthread.c:388 ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243 value changed: 0x00 -> 0x01 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 27 Comm: kworker/u8:1 Tainted: G W 6.8.0-syzkaller-08073-g480e035fc4c7 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet
CVE-2024-26861 In the Linux kernel, the following vulnerability has been resolved: wireguard: receive: annotate data-race around receiving_counter.counter Syzkaller with KCSAN identified a data-race issue when accessing keypair->receiving_counter.counter. Use READ_ONCE() and WRITE_ONCE() annotations to mark the data race as intentional. BUG: KCSAN: data-race in wg_packet_decrypt_worker / wg_packet_rx_poll write to 0xffff888107765888 of 8 bytes by interrupt on cpu 0: counter_validate drivers/net/wireguard/receive.c:321 [inline] wg_packet_rx_poll+0x3ac/0xf00 drivers/net/wireguard/receive.c:461 __napi_poll+0x60/0x3b0 net/core/dev.c:6536 napi_poll net/core/dev.c:6605 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6738 __do_softirq+0xc4/0x279 kernel/softirq.c:553 do_softirq+0x5e/0x90 kernel/softirq.c:454 __local_bh_enable_ip+0x64/0x70 kernel/softirq.c:381 __raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline] _raw_spin_unlock_bh+0x36/0x40 kernel/locking/spinlock.c:210 spin_unlock_bh include/linux/spinlock.h:396 [inline] ptr_ring_consume_bh include/linux/ptr_ring.h:367 [inline] wg_packet_decrypt_worker+0x6c5/0x700 drivers/net/wireguard/receive.c:499 process_one_work kernel/workqueue.c:2633 [inline] ... read to 0xffff888107765888 of 8 bytes by task 3196 on cpu 1: decrypt_packet drivers/net/wireguard/receive.c:252 [inline] wg_packet_decrypt_worker+0x220/0x700 drivers/net/wireguard/receive.c:501 process_one_work kernel/workqueue.c:2633 [inline] process_scheduled_works+0x5b8/0xa30 kernel/workqueue.c:2706 worker_thread+0x525/0x730 kernel/workqueue.c:2787 ...
CVE-2024-26860 In the Linux kernel, the following vulnerability has been resolved: dm-integrity: fix a memory leak when rechecking the data Memory for the "checksums" pointer will leak if the data is rechecked after checksum failure (because the associated kfree won't happen due to 'goto skip_io'). Fix this by freeing the checksums memory before recheck, and just use the "checksum_onstack" memory for storing checksum during recheck.
CVE-2024-26859 In the Linux kernel, the following vulnerability has been resolved: net/bnx2x: Prevent access to a freed page in page_pool Fix race condition leading to system crash during EEH error handling During EEH error recovery, the bnx2x driver's transmit timeout logic could cause a race condition when handling reset tasks. The bnx2x_tx_timeout() schedules reset tasks via bnx2x_sp_rtnl_task(), which ultimately leads to bnx2x_nic_unload(). In bnx2x_nic_unload() SGEs are freed using bnx2x_free_rx_sge_range(). However, this could overlap with the EEH driver's attempt to reset the device using bnx2x_io_slot_reset(), which also tries to free SGEs. This race condition can result in system crashes due to accessing freed memory locations in bnx2x_free_rx_sge() 799 static inline void bnx2x_free_rx_sge(struct bnx2x *bp, 800 struct bnx2x_fastpath *fp, u16 index) 801 { 802 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 803 struct page *page = sw_buf->page; .... where sw_buf was set to NULL after the call to dma_unmap_page() by the preceding thread. EEH: Beginning: 'slot_reset' PCI 0011:01:00.0#10000: EEH: Invoking bnx2x->slot_reset() bnx2x: [bnx2x_io_slot_reset:14228(eth1)]IO slot reset initializing... bnx2x 0011:01:00.0: enabling device (0140 -> 0142) bnx2x: [bnx2x_io_slot_reset:14244(eth1)]IO slot reset --> driver unload Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc0080000025065fc Oops: Kernel access of bad area, sig: 11 [#1] ..... Call Trace: [c000000003c67a20] [c00800000250658c] bnx2x_io_slot_reset+0x204/0x610 [bnx2x] (unreliable) [c000000003c67af0] [c0000000000518a8] eeh_report_reset+0xb8/0xf0 [c000000003c67b60] [c000000000052130] eeh_pe_report+0x180/0x550 [c000000003c67c70] [c00000000005318c] eeh_handle_normal_event+0x84c/0xa60 [c000000003c67d50] [c000000000053a84] eeh_event_handler+0xf4/0x170 [c000000003c67da0] [c000000000194c58] kthread+0x1c8/0x1d0 [c000000003c67e10] [c00000000000cf64] ret_from_kernel_thread+0x5c/0x64 To solve this issue, we need to verify page pool allocations before freeing.
CVE-2024-26858 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Use a memory barrier to enforce PTP WQ xmit submission tracking occurs after populating the metadata_map Just simply reordering the functions mlx5e_ptp_metadata_map_put and mlx5e_ptpsq_track_metadata in the mlx5e_txwqe_complete context is not good enough since both the compiler and CPU are free to reorder these two functions. If reordering does occur, the issue that was supposedly fixed by 7e3f3ba97e6c ("net/mlx5e: Track xmit submission to PTP WQ after populating metadata map") will be seen. This will lead to NULL pointer dereferences in mlx5e_ptpsq_mark_ts_cqes_undelivered in the NAPI polling context due to the tracking list being populated before the metadata map.
CVE-2024-26857 In the Linux kernel, the following vulnerability has been resolved: geneve: make sure to pull inner header in geneve_rx() syzbot triggered a bug in geneve_rx() [1] Issue is similar to the one I fixed in commit 8d975c15c0cd ("ip6_tunnel: make sure to pull inner header in __ip6_tnl_rcv()") We have to save skb->network_header in a temporary variable in order to be able to recompute the network_header pointer after a pskb_inet_may_pull() call. pskb_inet_may_pull() makes sure the needed headers are in skb->head. [1] BUG: KMSAN: uninit-value in IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] BUG: KMSAN: uninit-value in geneve_rx drivers/net/geneve.c:279 [inline] BUG: KMSAN: uninit-value in geneve_udp_encap_recv+0x36f9/0x3c10 drivers/net/geneve.c:391 IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] geneve_rx drivers/net/geneve.c:279 [inline] geneve_udp_encap_recv+0x36f9/0x3c10 drivers/net/geneve.c:391 udp_queue_rcv_one_skb+0x1d39/0x1f20 net/ipv4/udp.c:2108 udp_queue_rcv_skb+0x6ae/0x6e0 net/ipv4/udp.c:2186 udp_unicast_rcv_skb+0x184/0x4b0 net/ipv4/udp.c:2346 __udp4_lib_rcv+0x1c6b/0x3010 net/ipv4/udp.c:2422 udp_rcv+0x7d/0xa0 net/ipv4/udp.c:2604 ip_protocol_deliver_rcu+0x264/0x1300 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x2b8/0x440 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:314 [inline] ip_local_deliver+0x21f/0x490 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:461 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip_rcv+0x46f/0x760 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5534 [inline] __netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5648 process_backlog+0x480/0x8b0 net/core/dev.c:5976 __napi_poll+0xe3/0x980 net/core/dev.c:6576 napi_poll net/core/dev.c:6645 [inline] net_rx_action+0x8b8/0x1870 net/core/dev.c:6778 __do_softirq+0x1b7/0x7c5 kernel/softirq.c:553 do_softirq+0x9a/0xf0 kernel/softirq.c:454 __local_bh_enable_ip+0x9b/0xa0 kernel/softirq.c:381 local_bh_enable include/linux/bottom_half.h:33 [inline] rcu_read_unlock_bh include/linux/rcupdate.h:820 [inline] __dev_queue_xmit+0x2768/0x51c0 net/core/dev.c:4378 dev_queue_xmit include/linux/netdevice.h:3171 [inline] packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3081 [inline] packet_sendmsg+0x8aef/0x9f10 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] __sys_sendto+0x735/0xa10 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1c0 net/socket.c:2199 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook mm/slub.c:3819 [inline] slab_alloc_node mm/slub.c:3860 [inline] kmem_cache_alloc_node+0x5cb/0xbc0 mm/slub.c:3903 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560 __alloc_skb+0x352/0x790 net/core/skbuff.c:651 alloc_skb include/linux/skbuff.h:1296 [inline] alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6394 sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2783 packet_alloc_skb net/packet/af_packet.c:2930 [inline] packet_snd net/packet/af_packet.c:3024 [inline] packet_sendmsg+0x70c2/0x9f10 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] __sys_sendto+0x735/0xa10 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1c0 net/socket.c:2199 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b
CVE-2024-26856 In the Linux kernel, the following vulnerability has been resolved: net: sparx5: Fix use after free inside sparx5_del_mact_entry Based on the static analyzis of the code it looks like when an entry from the MAC table was removed, the entry was still used after being freed. More precise the vid of the mac_entry was used after calling devm_kfree on the mac_entry. The fix consists in first using the vid of the mac_entry to delete the entry from the HW and after that to free it.
CVE-2024-26855 In the Linux kernel, the following vulnerability has been resolved: net: ice: Fix potential NULL pointer dereference in ice_bridge_setlink() The function ice_bridge_setlink() may encounter a NULL pointer dereference if nlmsg_find_attr() returns NULL and br_spec is dereferenced subsequently in nla_for_each_nested(). To address this issue, add a check to ensure that br_spec is not NULL before proceeding with the nested attribute iteration.
CVE-2024-26854 In the Linux kernel, the following vulnerability has been resolved: ice: fix uninitialized dplls mutex usage The pf->dplls.lock mutex is initialized too late, after its first use. Move it to the top of ice_dpll_init. Note that the "err_exit" error path destroys the mutex. And the mutex is the last thing destroyed in ice_dpll_deinit. This fixes the following warning with CONFIG_DEBUG_MUTEXES: ice 0000:10:00.0: The DDP package was successfully loaded: ICE OS Default Package version 1.3.36.0 ice 0000:10:00.0: 252.048 Gb/s available PCIe bandwidth (16.0 GT/s PCIe x16 link) ice 0000:10:00.0: PTP init successful ------------[ cut here ]------------ DEBUG_LOCKS_WARN_ON(lock->magic != lock) WARNING: CPU: 0 PID: 410 at kernel/locking/mutex.c:587 __mutex_lock+0x773/0xd40 Modules linked in: crct10dif_pclmul crc32_pclmul crc32c_intel polyval_clmulni polyval_generic ice(+) nvme nvme_c> CPU: 0 PID: 410 Comm: kworker/0:4 Not tainted 6.8.0-rc5+ #3 Hardware name: HPE ProLiant DL110 Gen10 Plus/ProLiant DL110 Gen10 Plus, BIOS U56 10/19/2023 Workqueue: events work_for_cpu_fn RIP: 0010:__mutex_lock+0x773/0xd40 Code: c0 0f 84 1d f9 ff ff 44 8b 35 0d 9c 69 01 45 85 f6 0f 85 0d f9 ff ff 48 c7 c6 12 a2 a9 85 48 c7 c7 12 f1 a> RSP: 0018:ff7eb1a3417a7ae0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: 0000000000000002 RSI: ffffffff85ac2bff RDI: 00000000ffffffff RBP: ff7eb1a3417a7b80 R08: 0000000000000000 R09: 00000000ffffbfff R10: ff7eb1a3417a7978 R11: ff32b80f7fd2e568 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ff32b7f02c50e0d8 FS: 0000000000000000(0000) GS:ff32b80efe800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055b5852cc000 CR3: 000000003c43a004 CR4: 0000000000771ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? __warn+0x84/0x170 ? __mutex_lock+0x773/0xd40 ? report_bug+0x1c7/0x1d0 ? prb_read_valid+0x1b/0x30 ? handle_bug+0x42/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? __mutex_lock+0x773/0xd40 ? rcu_is_watching+0x11/0x50 ? __kmalloc_node_track_caller+0x346/0x490 ? ice_dpll_lock_status_get+0x28/0x50 [ice] ? __pfx_ice_dpll_lock_status_get+0x10/0x10 [ice] ? ice_dpll_lock_status_get+0x28/0x50 [ice] ice_dpll_lock_status_get+0x28/0x50 [ice] dpll_device_get_one+0x14f/0x2e0 dpll_device_event_send+0x7d/0x150 dpll_device_register+0x124/0x180 ice_dpll_init_dpll+0x7b/0xd0 [ice] ice_dpll_init+0x224/0xa40 [ice] ? _dev_info+0x70/0x90 ice_load+0x468/0x690 [ice] ice_probe+0x75b/0xa10 [ice] ? _raw_spin_unlock_irqrestore+0x4f/0x80 ? process_one_work+0x1a3/0x500 local_pci_probe+0x47/0xa0 work_for_cpu_fn+0x17/0x30 process_one_work+0x20d/0x500 worker_thread+0x1df/0x3e0 ? __pfx_worker_thread+0x10/0x10 kthread+0x103/0x140 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> irq event stamp: 125197 hardirqs last enabled at (125197): [<ffffffff8416409d>] finish_task_switch.isra.0+0x12d/0x3d0 hardirqs last disabled at (125196): [<ffffffff85134044>] __schedule+0xea4/0x19f0 softirqs last enabled at (105334): [<ffffffff84e1e65a>] napi_get_frags_check+0x1a/0x60 softirqs last disabled at (105332): [<ffffffff84e1e65a>] napi_get_frags_check+0x1a/0x60 ---[ end trace 0000000000000000 ]---
CVE-2024-26853 In the Linux kernel, the following vulnerability has been resolved: igc: avoid returning frame twice in XDP_REDIRECT When a frame can not be transmitted in XDP_REDIRECT (e.g. due to a full queue), it is necessary to free it by calling xdp_return_frame_rx_napi. However, this is the responsibility of the caller of the ndo_xdp_xmit (see for example bq_xmit_all in kernel/bpf/devmap.c) and thus calling it inside igc_xdp_xmit (which is the ndo_xdp_xmit of the igc driver) as well will lead to memory corruption. In fact, bq_xmit_all expects that it can return all frames after the last successfully transmitted one. Therefore, break for the first not transmitted frame, but do not call xdp_return_frame_rx_napi in igc_xdp_xmit. This is equally implemented in other Intel drivers such as the igb. There are two alternatives to this that were rejected: 1. Return num_frames as all the frames would have been transmitted and release them inside igc_xdp_xmit. While it might work technically, it is not what the return value is meant to represent (i.e. the number of SUCCESSFULLY transmitted packets). 2. Rework kernel/bpf/devmap.c and all drivers to support non-consecutively dropped packets. Besides being complex, it likely has a negative performance impact without a significant gain since it is anyway unlikely that the next frame can be transmitted if the previous one was dropped. The memory corruption can be reproduced with the following script which leads to a kernel panic after a few seconds. It basically generates more traffic than a i225 NIC can transmit and pushes it via XDP_REDIRECT from a virtual interface to the physical interface where frames get dropped. #!/bin/bash INTERFACE=enp4s0 INTERFACE_IDX=`cat /sys/class/net/$INTERFACE/ifindex` sudo ip link add dev veth1 type veth peer name veth2 sudo ip link set up $INTERFACE sudo ip link set up veth1 sudo ip link set up veth2 cat << EOF > redirect.bpf.c SEC("prog") int redirect(struct xdp_md *ctx) { return bpf_redirect($INTERFACE_IDX, 0); } char _license[] SEC("license") = "GPL"; EOF clang -O2 -g -Wall -target bpf -c redirect.bpf.c -o redirect.bpf.o sudo ip link set veth2 xdp obj redirect.bpf.o cat << EOF > pass.bpf.c SEC("prog") int pass(struct xdp_md *ctx) { return XDP_PASS; } char _license[] SEC("license") = "GPL"; EOF clang -O2 -g -Wall -target bpf -c pass.bpf.c -o pass.bpf.o sudo ip link set $INTERFACE xdp obj pass.bpf.o cat << EOF > trafgen.cfg { /* Ethernet Header */ 0xe8, 0x6a, 0x64, 0x41, 0xbf, 0x46, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, const16(ETH_P_IP), /* IPv4 Header */ 0b01000101, 0, # IPv4 version, IHL, TOS const16(1028), # IPv4 total length (UDP length + 20 bytes (IP header)) const16(2), # IPv4 ident 0b01000000, 0, # IPv4 flags, fragmentation off 64, # IPv4 TTL 17, # Protocol UDP csumip(14, 33), # IPv4 checksum /* UDP Header */ 10, 0, 1, 1, # IP Src - adapt as needed 10, 0, 1, 2, # IP Dest - adapt as needed const16(6666), # UDP Src Port const16(6666), # UDP Dest Port const16(1008), # UDP length (UDP header 8 bytes + payload length) csumudp(14, 34), # UDP checksum /* Payload */ fill('W', 1000), } EOF sudo trafgen -i trafgen.cfg -b3000MB -o veth1 --cpp
CVE-2024-26852 In the Linux kernel, the following vulnerability has been resolved: net/ipv6: avoid possible UAF in ip6_route_mpath_notify() syzbot found another use-after-free in ip6_route_mpath_notify() [1] Commit f7225172f25a ("net/ipv6: prevent use after free in ip6_route_mpath_notify") was not able to fix the root cause. We need to defer the fib6_info_release() calls after ip6_route_mpath_notify(), in the cleanup phase. [1] BUG: KASAN: slab-use-after-free in rt6_fill_node+0x1460/0x1ac0 Read of size 4 at addr ffff88809a07fc64 by task syz-executor.2/23037 CPU: 0 PID: 23037 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-01035-gea7f3cfaa588 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:377 [inline] print_report+0x167/0x540 mm/kasan/report.c:488 kasan_report+0x142/0x180 mm/kasan/report.c:601 rt6_fill_node+0x1460/0x1ac0 inet6_rt_notify+0x13b/0x290 net/ipv6/route.c:6184 ip6_route_mpath_notify net/ipv6/route.c:5198 [inline] ip6_route_multipath_add net/ipv6/route.c:5404 [inline] inet6_rtm_newroute+0x1d0f/0x2300 net/ipv6/route.c:5517 rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367 netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f73dd87dda9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f73de6550c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f73dd9ac050 RCX: 00007f73dd87dda9 RDX: 0000000000000000 RSI: 0000000020000140 RDI: 0000000000000005 RBP: 00007f73dd8ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000006e R14: 00007f73dd9ac050 R15: 00007ffdbdeb7858 </TASK> Allocated by task 23037: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:372 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:389 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:3981 [inline] __kmalloc+0x22e/0x490 mm/slub.c:3994 kmalloc include/linux/slab.h:594 [inline] kzalloc include/linux/slab.h:711 [inline] fib6_info_alloc+0x2e/0xf0 net/ipv6/ip6_fib.c:155 ip6_route_info_create+0x445/0x12b0 net/ipv6/route.c:3758 ip6_route_multipath_add net/ipv6/route.c:5298 [inline] inet6_rtm_newroute+0x744/0x2300 net/ipv6/route.c:5517 rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367 netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 Freed by task 16: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x4e/0x60 mm/kasan/generic.c:640 poison_slab_object+0xa6/0xe0 m ---truncated---
CVE-2024-26851 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_conntrack_h323: Add protection for bmp length out of range UBSAN load reports an exception of BRK#5515 SHIFT_ISSUE:Bitwise shifts that are out of bounds for their data type. vmlinux get_bitmap(b=75) + 712 <net/netfilter/nf_conntrack_h323_asn1.c:0> vmlinux decode_seq(bs=0xFFFFFFD008037000, f=0xFFFFFFD008037018, level=134443100) + 1956 <net/netfilter/nf_conntrack_h323_asn1.c:592> vmlinux decode_choice(base=0xFFFFFFD0080370F0, level=23843636) + 1216 <net/netfilter/nf_conntrack_h323_asn1.c:814> vmlinux decode_seq(f=0xFFFFFFD0080371A8, level=134443500) + 812 <net/netfilter/nf_conntrack_h323_asn1.c:576> vmlinux decode_choice(base=0xFFFFFFD008037280, level=0) + 1216 <net/netfilter/nf_conntrack_h323_asn1.c:814> vmlinux DecodeRasMessage() + 304 <net/netfilter/nf_conntrack_h323_asn1.c:833> vmlinux ras_help() + 684 <net/netfilter/nf_conntrack_h323_main.c:1728> vmlinux nf_confirm() + 188 <net/netfilter/nf_conntrack_proto.c:137> Due to abnormal data in skb->data, the extension bitmap length exceeds 32 when decoding ras message then uses the length to make a shift operation. It will change into negative after several loop. UBSAN load could detect a negative shift as an undefined behaviour and reports exception. So we add the protection to avoid the length exceeding 32. Or else it will return out of range error and stop decoding.
CVE-2024-26850 In the Linux kernel, the following vulnerability has been resolved: mm/debug_vm_pgtable: fix BUG_ON with pud advanced test Architectures like powerpc add debug checks to ensure we find only devmap PUD pte entries. These debug checks are only done with CONFIG_DEBUG_VM. This patch marks the ptes used for PUD advanced test devmap pte entries so that we don't hit on debug checks on architecture like ppc64 as below. WARNING: CPU: 2 PID: 1 at arch/powerpc/mm/book3s64/radix_pgtable.c:1382 radix__pud_hugepage_update+0x38/0x138 .... NIP [c0000000000a7004] radix__pud_hugepage_update+0x38/0x138 LR [c0000000000a77a8] radix__pudp_huge_get_and_clear+0x28/0x60 Call Trace: [c000000004a2f950] [c000000004a2f9a0] 0xc000000004a2f9a0 (unreliable) [c000000004a2f980] [000d34c100000000] 0xd34c100000000 [c000000004a2f9a0] [c00000000206ba98] pud_advanced_tests+0x118/0x334 [c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48 [c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388 Also kernel BUG at arch/powerpc/mm/book3s64/pgtable.c:202! .... NIP [c000000000096510] pudp_huge_get_and_clear_full+0x98/0x174 LR [c00000000206bb34] pud_advanced_tests+0x1b4/0x334 Call Trace: [c000000004a2f950] [000d34c100000000] 0xd34c100000000 (unreliable) [c000000004a2f9a0] [c00000000206bb34] pud_advanced_tests+0x1b4/0x334 [c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48 [c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388
CVE-2024-26849 In the Linux kernel, the following vulnerability has been resolved: netlink: add nla be16/32 types to minlen array BUG: KMSAN: uninit-value in nla_validate_range_unsigned lib/nlattr.c:222 [inline] BUG: KMSAN: uninit-value in nla_validate_int_range lib/nlattr.c:336 [inline] BUG: KMSAN: uninit-value in validate_nla lib/nlattr.c:575 [inline] BUG: KMSAN: uninit-value in __nla_validate_parse+0x2e20/0x45c0 lib/nlattr.c:631 nla_validate_range_unsigned lib/nlattr.c:222 [inline] nla_validate_int_range lib/nlattr.c:336 [inline] validate_nla lib/nlattr.c:575 [inline] ... The message in question matches this policy: [NFTA_TARGET_REV] = NLA_POLICY_MAX(NLA_BE32, 255), but because NLA_BE32 size in minlen array is 0, the validation code will read past the malformed (too small) attribute. Note: Other attributes, e.g. BITFIELD32, SINT, UINT.. are also missing: those likely should be added too.
CVE-2024-26848 In the Linux kernel, the following vulnerability has been resolved: afs: Fix endless loop in directory parsing If a directory has a block with only ".__afsXXXX" files in it (from uncompleted silly-rename), these .__afsXXXX files are skipped but without advancing the file position in the dir_context. This leads to afs_dir_iterate() repeating the block again and again. Fix this by making the code that skips the .__afsXXXX file also manually advance the file position. The symptoms are a soft lookup: watchdog: BUG: soft lockup - CPU#3 stuck for 52s! [check:5737] ... RIP: 0010:afs_dir_iterate_block+0x39/0x1fd ... ? watchdog_timer_fn+0x1a6/0x213 ... ? asm_sysvec_apic_timer_interrupt+0x16/0x20 ? afs_dir_iterate_block+0x39/0x1fd afs_dir_iterate+0x10a/0x148 afs_readdir+0x30/0x4a iterate_dir+0x93/0xd3 __do_sys_getdents64+0x6b/0xd4 This is almost certainly the actual fix for: https://bugzilla.kernel.org/show_bug.cgi?id=218496
CVE-2024-26847 In the Linux kernel, the following vulnerability has been resolved: powerpc/rtas: use correct function name for resetting TCE tables The PAPR spec spells the function name as "ibm,reset-pe-dma-windows" but in practice firmware uses the singular form: "ibm,reset-pe-dma-window" in the device tree. Since we have the wrong spelling in the RTAS function table, reverse lookups (token -> name) fail and warn: unexpected failed lookup for token 86 WARNING: CPU: 1 PID: 545 at arch/powerpc/kernel/rtas.c:659 __do_enter_rtas_trace+0x2a4/0x2b4 CPU: 1 PID: 545 Comm: systemd-udevd Not tainted 6.8.0-rc4 #30 Hardware name: IBM,9105-22A POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NL1060_028) hv:phyp pSeries NIP [c0000000000417f0] __do_enter_rtas_trace+0x2a4/0x2b4 LR [c0000000000417ec] __do_enter_rtas_trace+0x2a0/0x2b4 Call Trace: __do_enter_rtas_trace+0x2a0/0x2b4 (unreliable) rtas_call+0x1f8/0x3e0 enable_ddw.constprop.0+0x4d0/0xc84 dma_iommu_dma_supported+0xe8/0x24c dma_set_mask+0x5c/0xd8 mlx5_pci_init.constprop.0+0xf0/0x46c [mlx5_core] probe_one+0xfc/0x32c [mlx5_core] local_pci_probe+0x68/0x12c pci_call_probe+0x68/0x1ec pci_device_probe+0xbc/0x1a8 really_probe+0x104/0x570 __driver_probe_device+0xb8/0x224 driver_probe_device+0x54/0x130 __driver_attach+0x158/0x2b0 bus_for_each_dev+0xa8/0x120 driver_attach+0x34/0x48 bus_add_driver+0x174/0x304 driver_register+0x8c/0x1c4 __pci_register_driver+0x68/0x7c mlx5_init+0xb8/0x118 [mlx5_core] do_one_initcall+0x60/0x388 do_init_module+0x7c/0x2a4 init_module_from_file+0xb4/0x108 idempotent_init_module+0x184/0x34c sys_finit_module+0x90/0x114 And oopses are possible when lockdep is enabled or the RTAS tracepoints are active, since those paths dereference the result of the lookup. Use the correct spelling to match firmware's behavior, adjusting the related constants to match.
CVE-2024-26846 In the Linux kernel, the following vulnerability has been resolved: nvme-fc: do not wait in vain when unloading module The module exit path has race between deleting all controllers and freeing 'left over IDs'. To prevent double free a synchronization between nvme_delete_ctrl and ida_destroy has been added by the initial commit. There is some logic around trying to prevent from hanging forever in wait_for_completion, though it does not handling all cases. E.g. blktests is able to reproduce the situation where the module unload hangs forever. If we completely rely on the cleanup code executed from the nvme_delete_ctrl path, all IDs will be freed eventually. This makes calling ida_destroy unnecessary. We only have to ensure that all nvme_delete_ctrl code has been executed before we leave nvme_fc_exit_module. This is done by flushing the nvme_delete_wq workqueue. While at it, remove the unused nvme_fc_wq workqueue too.
CVE-2024-26845 In the Linux kernel, the following vulnerability has been resolved: scsi: target: core: Add TMF to tmr_list handling An abort that is responded to by iSCSI itself is added to tmr_list but does not go to target core. A LUN_RESET that goes through tmr_list takes a refcounter on the abort and waits for completion. However, the abort will be never complete because it was not started in target core. Unable to locate ITT: 0x05000000 on CID: 0 Unable to locate RefTaskTag: 0x05000000 on CID: 0. wait_for_tasks: Stopping tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop wait for tasks: tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop ... INFO: task kworker/0:2:49 blocked for more than 491 seconds. task:kworker/0:2 state:D stack: 0 pid: 49 ppid: 2 flags:0x00000800 Workqueue: events target_tmr_work [target_core_mod] Call Trace: __switch_to+0x2c4/0x470 _schedule+0x314/0x1730 schedule+0x64/0x130 schedule_timeout+0x168/0x430 wait_for_completion+0x140/0x270 target_put_cmd_and_wait+0x64/0xb0 [target_core_mod] core_tmr_lun_reset+0x30/0xa0 [target_core_mod] target_tmr_work+0xc8/0x1b0 [target_core_mod] process_one_work+0x2d4/0x5d0 worker_thread+0x78/0x6c0 To fix this, only add abort to tmr_list if it will be handled by target core.
CVE-2024-26844 In the Linux kernel, the following vulnerability has been resolved: block: Fix WARNING in _copy_from_iter Syzkaller reports a warning in _copy_from_iter because an iov_iter is supposedly used in the wrong direction. The reason is that syzcaller managed to generate a request with a transfer direction of SG_DXFER_TO_FROM_DEV. This instructs the kernel to copy user buffers into the kernel, read into the copied buffers and then copy the data back to user space. Thus the iovec is used in both directions. Detect this situation in the block layer and construct a new iterator with the correct direction for the copy-in.
CVE-2024-26843 In the Linux kernel, the following vulnerability has been resolved: efi: runtime: Fix potential overflow of soft-reserved region size md_size will have been narrowed if we have >= 4GB worth of pages in a soft-reserved region.
CVE-2024-26842 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix shift issue in ufshcd_clear_cmd() When task_tag >= 32 (in MCQ mode) and sizeof(unsigned int) == 4, 1U << task_tag will out of bounds for a u32 mask. Fix this up to prevent SHIFT_ISSUE (bitwise shifts that are out of bounds for their data type). [name:debug_monitors&]Unexpected kernel BRK exception at EL1 [name:traps&]Internal error: BRK handler: 00000000f2005514 [#1] PREEMPT SMP [name:mediatek_cpufreq_hw&]cpufreq stop DVFS log done [name:mrdump&]Kernel Offset: 0x1ba5800000 from 0xffffffc008000000 [name:mrdump&]PHYS_OFFSET: 0x80000000 [name:mrdump&]pstate: 22400005 (nzCv daif +PAN -UAO) [name:mrdump&]pc : [0xffffffdbaf52bb2c] ufshcd_clear_cmd+0x280/0x288 [name:mrdump&]lr : [0xffffffdbaf52a774] ufshcd_wait_for_dev_cmd+0x3e4/0x82c [name:mrdump&]sp : ffffffc0081471b0 <snip> Workqueue: ufs_eh_wq_0 ufshcd_err_handler Call trace: dump_backtrace+0xf8/0x144 show_stack+0x18/0x24 dump_stack_lvl+0x78/0x9c dump_stack+0x18/0x44 mrdump_common_die+0x254/0x480 [mrdump] ipanic_die+0x20/0x30 [mrdump] notify_die+0x15c/0x204 die+0x10c/0x5f8 arm64_notify_die+0x74/0x13c do_debug_exception+0x164/0x26c el1_dbg+0x64/0x80 el1h_64_sync_handler+0x3c/0x90 el1h_64_sync+0x68/0x6c ufshcd_clear_cmd+0x280/0x288 ufshcd_wait_for_dev_cmd+0x3e4/0x82c ufshcd_exec_dev_cmd+0x5bc/0x9ac ufshcd_verify_dev_init+0x84/0x1c8 ufshcd_probe_hba+0x724/0x1ce0 ufshcd_host_reset_and_restore+0x260/0x574 ufshcd_reset_and_restore+0x138/0xbd0 ufshcd_err_handler+0x1218/0x2f28 process_one_work+0x5fc/0x1140 worker_thread+0x7d8/0xe20 kthread+0x25c/0x468 ret_from_fork+0x10/0x20
CVE-2024-26841 In the Linux kernel, the following vulnerability has been resolved: LoongArch: Update cpu_sibling_map when disabling nonboot CPUs Update cpu_sibling_map when disabling nonboot CPUs by defining & calling clear_cpu_sibling_map(), otherwise we get such errors on SMT systems: jump label: negative count! WARNING: CPU: 6 PID: 45 at kernel/jump_label.c:263 __static_key_slow_dec_cpuslocked+0xec/0x100 CPU: 6 PID: 45 Comm: cpuhp/6 Not tainted 6.8.0-rc5+ #1340 pc 90000000004c302c ra 90000000004c302c tp 90000001005bc000 sp 90000001005bfd20 a0 000000000000001b a1 900000000224c278 a2 90000001005bfb58 a3 900000000224c280 a4 900000000224c278 a5 90000001005bfb50 a6 0000000000000001 a7 0000000000000001 t0 ce87a4763eb5234a t1 ce87a4763eb5234a t2 0000000000000000 t3 0000000000000000 t4 0000000000000006 t5 0000000000000000 t6 0000000000000064 t7 0000000000001964 t8 000000000009ebf6 u0 9000000001f2a068 s9 0000000000000000 s0 900000000246a2d8 s1 ffffffffffffffff s2 ffffffffffffffff s3 90000000021518c0 s4 0000000000000040 s5 9000000002151058 s6 9000000009828e40 s7 00000000000000b4 s8 0000000000000006 ra: 90000000004c302c __static_key_slow_dec_cpuslocked+0xec/0x100 ERA: 90000000004c302c __static_key_slow_dec_cpuslocked+0xec/0x100 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 00000004 (PPLV0 +PIE -PWE) EUEN: 00000000 (-FPE -SXE -ASXE -BTE) ECFG: 00071c1c (LIE=2-4,10-12 VS=7) ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0) PRID: 0014d000 (Loongson-64bit, Loongson-3A6000-HV) CPU: 6 PID: 45 Comm: cpuhp/6 Not tainted 6.8.0-rc5+ #1340 Stack : 0000000000000000 900000000203f258 900000000179afc8 90000001005bc000 90000001005bf980 0000000000000000 90000001005bf988 9000000001fe0be0 900000000224c280 900000000224c278 90000001005bf8c0 0000000000000001 0000000000000001 ce87a4763eb5234a 0000000007f38000 90000001003f8cc0 0000000000000000 0000000000000006 0000000000000000 4c206e6f73676e6f 6f4c203a656d616e 000000000009ec99 0000000007f38000 0000000000000000 900000000214b000 9000000001fe0be0 0000000000000004 0000000000000000 0000000000000107 0000000000000009 ffffffffffafdabe 00000000000000b4 0000000000000006 90000000004c302c 9000000000224528 00005555939a0c7c 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c ... Call Trace: [<9000000000224528>] show_stack+0x48/0x1a0 [<900000000179afc8>] dump_stack_lvl+0x78/0xa0 [<9000000000263ed0>] __warn+0x90/0x1a0 [<90000000017419b8>] report_bug+0x1b8/0x280 [<900000000179c564>] do_bp+0x264/0x420 [<90000000004c302c>] __static_key_slow_dec_cpuslocked+0xec/0x100 [<90000000002b4d7c>] sched_cpu_deactivate+0x2fc/0x300 [<9000000000266498>] cpuhp_invoke_callback+0x178/0x8a0 [<9000000000267f70>] cpuhp_thread_fun+0xf0/0x240 [<90000000002a117c>] smpboot_thread_fn+0x1dc/0x2e0 [<900000000029a720>] kthread+0x140/0x160 [<9000000000222288>] ret_from_kernel_thread+0xc/0xa4
CVE-2024-26840 In the Linux kernel, the following vulnerability has been resolved: cachefiles: fix memory leak in cachefiles_add_cache() The following memory leak was reported after unbinding /dev/cachefiles: ================================================================== unreferenced object 0xffff9b674176e3c0 (size 192): comm "cachefilesd2", pid 680, jiffies 4294881224 hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc ea38a44b): [<ffffffff8eb8a1a5>] kmem_cache_alloc+0x2d5/0x370 [<ffffffff8e917f86>] prepare_creds+0x26/0x2e0 [<ffffffffc002eeef>] cachefiles_determine_cache_security+0x1f/0x120 [<ffffffffc00243ec>] cachefiles_add_cache+0x13c/0x3a0 [<ffffffffc0025216>] cachefiles_daemon_write+0x146/0x1c0 [<ffffffff8ebc4a3b>] vfs_write+0xcb/0x520 [<ffffffff8ebc5069>] ksys_write+0x69/0xf0 [<ffffffff8f6d4662>] do_syscall_64+0x72/0x140 [<ffffffff8f8000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 ================================================================== Put the reference count of cache_cred in cachefiles_daemon_unbind() to fix the problem. And also put cache_cred in cachefiles_add_cache() error branch to avoid memory leaks.
CVE-2024-26839 In the Linux kernel, the following vulnerability has been resolved: IB/hfi1: Fix a memleak in init_credit_return When dma_alloc_coherent fails to allocate dd->cr_base[i].va, init_credit_return should deallocate dd->cr_base and dd->cr_base[i] that allocated before. Or those resources would be never freed and a memleak is triggered.
CVE-2024-26838 In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix KASAN issue with tasklet KASAN testing revealed the following issue assocated with freeing an IRQ. [50006.466686] Call Trace: [50006.466691] <IRQ> [50006.489538] dump_stack+0x5c/0x80 [50006.493475] print_address_description.constprop.6+0x1a/0x150 [50006.499872] ? irdma_sc_process_ceq+0x483/0x790 [irdma] [50006.505742] ? irdma_sc_process_ceq+0x483/0x790 [irdma] [50006.511644] kasan_report.cold.11+0x7f/0x118 [50006.516572] ? irdma_sc_process_ceq+0x483/0x790 [irdma] [50006.522473] irdma_sc_process_ceq+0x483/0x790 [irdma] [50006.528232] irdma_process_ceq+0xb2/0x400 [irdma] [50006.533601] ? irdma_hw_flush_wqes_callback+0x370/0x370 [irdma] [50006.540298] irdma_ceq_dpc+0x44/0x100 [irdma] [50006.545306] tasklet_action_common.isra.14+0x148/0x2c0 [50006.551096] __do_softirq+0x1d0/0xaf8 [50006.555396] irq_exit_rcu+0x219/0x260 [50006.559670] irq_exit+0xa/0x20 [50006.563320] smp_apic_timer_interrupt+0x1bf/0x690 [50006.568645] apic_timer_interrupt+0xf/0x20 [50006.573341] </IRQ> The issue is that a tasklet could be pending on another core racing the delete of the irq. Fix by insuring any scheduled tasklet is killed after deleting the irq.
CVE-2024-26837 In the Linux kernel, the following vulnerability has been resolved: net: bridge: switchdev: Skip MDB replays of deferred events on offload Before this change, generation of the list of MDB events to replay would race against the creation of new group memberships, either from the IGMP/MLD snooping logic or from user configuration. While new memberships are immediately visible to walkers of br->mdb_list, the notification of their existence to switchdev event subscribers is deferred until a later point in time. So if a replay list was generated during a time that overlapped with such a window, it would also contain a replay of the not-yet-delivered event. The driver would thus receive two copies of what the bridge internally considered to be one single event. On destruction of the bridge, only a single membership deletion event was therefore sent. As a consequence of this, drivers which reference count memberships (at least DSA), would be left with orphan groups in their hardware database when the bridge was destroyed. This is only an issue when replaying additions. While deletion events may still be pending on the deferred queue, they will already have been removed from br->mdb_list, so no duplicates can be generated in that scenario. To a user this meant that old group memberships, from a bridge in which a port was previously attached, could be reanimated (in hardware) when the port joined a new bridge, without the new bridge's knowledge. For example, on an mv88e6xxx system, create a snooping bridge and immediately add a port to it: root@infix-06-0b-00:~$ ip link add dev br0 up type bridge mcast_snooping 1 && \ > ip link set dev x3 up master br0 And then destroy the bridge: root@infix-06-0b-00:~$ ip link del dev br0 root@infix-06-0b-00:~$ mvls atu ADDRESS FID STATE Q F 0 1 2 3 4 5 6 7 8 9 a DEV:0 Marvell 88E6393X 33:33:00:00:00:6a 1 static - - 0 . . . . . . . . . . 33:33:ff:87:e4:3f 1 static - - 0 . . . . . . . . . . ff:ff:ff:ff:ff:ff 1 static - - 0 1 2 3 4 5 6 7 8 9 a root@infix-06-0b-00:~$ The two IPv6 groups remain in the hardware database because the port (x3) is notified of the host's membership twice: once via the original event and once via a replay. Since only a single delete notification is sent, the count remains at 1 when the bridge is destroyed. Then add the same port (or another port belonging to the same hardware domain) to a new bridge, this time with snooping disabled: root@infix-06-0b-00:~$ ip link add dev br1 up type bridge mcast_snooping 0 && \ > ip link set dev x3 up master br1 All multicast, including the two IPv6 groups from br0, should now be flooded, according to the policy of br1. But instead the old memberships are still active in the hardware database, causing the switch to only forward traffic to those groups towards the CPU (port 0). Eliminate the race in two steps: 1. Grab the write-side lock of the MDB while generating the replay list. This prevents new memberships from showing up while we are generating the replay list. But it leaves the scenario in which a deferred event was already generated, but not delivered, before we grabbed the lock. Therefore: 2. Make sure that no deferred version of a replay event is already enqueued to the switchdev deferred queue, before adding it to the replay list, when replaying additions.
CVE-2024-26836 In the Linux kernel, the following vulnerability has been resolved: platform/x86: think-lmi: Fix password opcode ordering for workstations The Lenovo workstations require the password opcode to be run before the attribute value is changed (if Admin password is enabled). Tested on some Thinkpads to confirm they are OK with this order too.
CVE-2024-26835 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: set dormant flag on hook register failure We need to set the dormant flag again if we fail to register the hooks. During memory pressure hook registration can fail and we end up with a table marked as active but no registered hooks. On table/base chain deletion, nf_tables will attempt to unregister the hook again which yields a warn splat from the nftables core.
CVE-2024-26834 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_flow_offload: release dst in case direct xmit path is used Direct xmit does not use it since it calls dev_queue_xmit() to send packets, hence it calls dst_release(). kmemleak reports: unreferenced object 0xffff88814f440900 (size 184): comm "softirq", pid 0, jiffies 4294951896 hex dump (first 32 bytes): 00 60 5b 04 81 88 ff ff 00 e6 e8 82 ff ff ff ff .`[............. 21 0b 50 82 ff ff ff ff 00 00 00 00 00 00 00 00 !.P............. backtrace (crc cb2bf5d6): [<000000003ee17107>] kmem_cache_alloc+0x286/0x340 [<0000000021a5de2c>] dst_alloc+0x43/0xb0 [<00000000f0671159>] rt_dst_alloc+0x2e/0x190 [<00000000fe5092c9>] __mkroute_output+0x244/0x980 [<000000005fb96fb0>] ip_route_output_flow+0xc0/0x160 [<0000000045367433>] nf_ip_route+0xf/0x30 [<0000000085da1d8e>] nf_route+0x2d/0x60 [<00000000d1ecd1cb>] nft_flow_route+0x171/0x6a0 [nft_flow_offload] [<00000000d9b2fb60>] nft_flow_offload_eval+0x4e8/0x700 [nft_flow_offload] [<000000009f447dbb>] expr_call_ops_eval+0x53/0x330 [nf_tables] [<00000000072e1be6>] nft_do_chain+0x17c/0x840 [nf_tables] [<00000000d0551029>] nft_do_chain_inet+0xa1/0x210 [nf_tables] [<0000000097c9d5c6>] nf_hook_slow+0x5b/0x160 [<0000000005eccab1>] ip_forward+0x8b6/0x9b0 [<00000000553a269b>] ip_rcv+0x221/0x230 [<00000000412872e5>] __netif_receive_skb_one_core+0xfe/0x110
CVE-2024-26833 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix memory leak in dm_sw_fini() After destroying dmub_srv, the memory associated with it is not freed, causing a memory leak: unreferenced object 0xffff896302b45800 (size 1024): comm "(udev-worker)", pid 222, jiffies 4294894636 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 6265fd77): [<ffffffff993495ed>] kmalloc_trace+0x29d/0x340 [<ffffffffc0ea4a94>] dm_dmub_sw_init+0xb4/0x450 [amdgpu] [<ffffffffc0ea4e55>] dm_sw_init+0x15/0x2b0 [amdgpu] [<ffffffffc0ba8557>] amdgpu_device_init+0x1417/0x24e0 [amdgpu] [<ffffffffc0bab285>] amdgpu_driver_load_kms+0x15/0x190 [amdgpu] [<ffffffffc0ba09c7>] amdgpu_pci_probe+0x187/0x4e0 [amdgpu] [<ffffffff9968fd1e>] local_pci_probe+0x3e/0x90 [<ffffffff996918a3>] pci_device_probe+0xc3/0x230 [<ffffffff99805872>] really_probe+0xe2/0x480 [<ffffffff99805c98>] __driver_probe_device+0x78/0x160 [<ffffffff99805daf>] driver_probe_device+0x1f/0x90 [<ffffffff9980601e>] __driver_attach+0xce/0x1c0 [<ffffffff99803170>] bus_for_each_dev+0x70/0xc0 [<ffffffff99804822>] bus_add_driver+0x112/0x210 [<ffffffff99807245>] driver_register+0x55/0x100 [<ffffffff990012d1>] do_one_initcall+0x41/0x300 Fix this by freeing dmub_srv after destroying it.
CVE-2024-26832 In the Linux kernel, the following vulnerability has been resolved: mm: zswap: fix missing folio cleanup in writeback race path In zswap_writeback_entry(), after we get a folio from __read_swap_cache_async(), we grab the tree lock again to check that the swap entry was not invalidated and recycled. If it was, we delete the folio we just added to the swap cache and exit. However, __read_swap_cache_async() returns the folio locked when it is newly allocated, which is always true for this path, and the folio is ref'd. Make sure to unlock and put the folio before returning. This was discovered by code inspection, probably because this path handles a race condition that should not happen often, and the bug would not crash the system, it will only strand the folio indefinitely.
CVE-2024-26831 In the Linux kernel, the following vulnerability has been resolved: net/handshake: Fix handshake_req_destroy_test1 Recently, handshake_req_destroy_test1 started failing: Expected handshake_req_destroy_test == req, but handshake_req_destroy_test == 0000000000000000 req == 0000000060f99b40 not ok 11 req_destroy works This is because "sock_release(sock)" was replaced with "fput(filp)" to address a memory leak. Note that sock_release() is synchronous but fput() usually delays the final close and clean-up. The delay is not consequential in the other cases that were changed but handshake_req_destroy_test1 is testing that handshake_req_cancel() followed by closing the file actually does call the ->hp_destroy method. Thus the PTR_EQ test at the end has to be sure that the final close is complete before it checks the pointer. We cannot use a completion here because if ->hp_destroy is never called (ie, there is an API bug) then the test will hang. Reported by: Guenter Roeck <linux@roeck-us.net>
CVE-2024-26830 In the Linux kernel, the following vulnerability has been resolved: i40e: Do not allow untrusted VF to remove administratively set MAC Currently when PF administratively sets VF's MAC address and the VF is put down (VF tries to delete all MACs) then the MAC is removed from MAC filters and primary VF MAC is zeroed. Do not allow untrusted VF to remove primary MAC when it was set administratively by PF. Reproducer: 1) Create VF 2) Set VF interface up 3) Administratively set the VF's MAC 4) Put VF interface down [root@host ~]# echo 1 > /sys/class/net/enp2s0f0/device/sriov_numvfs [root@host ~]# ip link set enp2s0f0v0 up [root@host ~]# ip link set enp2s0f0 vf 0 mac fe:6c:b5:da:c7:7d [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether fe:6c:b5:da:c7:7d brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off [root@host ~]# ip link set enp2s0f0v0 down [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
CVE-2024-26829 In the Linux kernel, the following vulnerability has been resolved: media: ir_toy: fix a memleak in irtoy_tx When irtoy_command fails, buf should be freed since it is allocated by irtoy_tx, or there is a memleak.
CVE-2024-26828 In the Linux kernel, the following vulnerability has been resolved: cifs: fix underflow in parse_server_interfaces() In this loop, we step through the buffer and after each item we check if the size_left is greater than the minimum size we need. However, the problem is that "bytes_left" is type ssize_t while sizeof() is type size_t. That means that because of type promotion, the comparison is done as an unsigned and if we have negative bytes left the loop continues instead of ending.
CVE-2024-26826 In the Linux kernel, the following vulnerability has been resolved: mptcp: fix data re-injection from stale subflow When the MPTCP PM detects that a subflow is stale, all the packet scheduler must re-inject all the mptcp-level unacked data. To avoid acquiring unneeded locks, it first try to check if any unacked data is present at all in the RTX queue, but such check is currently broken, as it uses TCP-specific helper on an MPTCP socket. Funnily enough fuzzers and static checkers are happy, as the accessed memory still belongs to the mptcp_sock struct, and even from a functional perspective the recovery completed successfully, as the short-cut test always failed. A recent unrelated TCP change - commit d5fed5addb2b ("tcp: reorganize tcp_sock fast path variables") - exposed the issue, as the tcp field reorganization makes the mptcp code always skip the re-inection. Fix the issue dropping the bogus call: we are on a slow path, the early optimization proved once again to be evil.
CVE-2024-26825 In the Linux kernel, the following vulnerability has been resolved: nfc: nci: free rx_data_reassembly skb on NCI device cleanup rx_data_reassembly skb is stored during NCI data exchange for processing fragmented packets. It is dropped only when the last fragment is processed or when an NTF packet with NCI_OP_RF_DEACTIVATE_NTF opcode is received. However, the NCI device may be deallocated before that which leads to skb leak. As by design the rx_data_reassembly skb is bound to the NCI device and nothing prevents the device to be freed before the skb is processed in some way and cleaned, free it on the NCI device cleanup. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2024-26824 In the Linux kernel, the following vulnerability has been resolved: crypto: algif_hash - Remove bogus SGL free on zero-length error path When a zero-length message is hashed by algif_hash, and an error is triggered, it tries to free an SG list that was never allocated in the first place. Fix this by not freeing the SG list on the zero-length error path.
CVE-2024-26823 In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Restore quirk probing for ACPI-based systems While refactoring the way the ITSs are probed, the handling of quirks applicable to ACPI-based platforms was lost. As a result, systems such as HIP07 lose their GICv4 functionnality, and some other may even fail to boot, unless they are configured to boot with DT. Move the enabling of quirks into its_probe_one(), making it common to all firmware implementations.
CVE-2024-26822 In the Linux kernel, the following vulnerability has been resolved: smb: client: set correct id, uid and cruid for multiuser automounts When uid, gid and cruid are not specified, we need to dynamically set them into the filesystem context used for automounting otherwise they'll end up reusing the values from the parent mount.
CVE-2024-26820 In the Linux kernel, the following vulnerability has been resolved: hv_netvsc: Register VF in netvsc_probe if NET_DEVICE_REGISTER missed If hv_netvsc driver is unloaded and reloaded, the NET_DEVICE_REGISTER handler cannot perform VF register successfully as the register call is received before netvsc_probe is finished. This is because we register register_netdevice_notifier() very early( even before vmbus_driver_register()). To fix this, we try to register each such matching VF( if it is visible as a netdevice) at the end of netvsc_probe.
CVE-2024-26818 In the Linux kernel, the following vulnerability has been resolved: tools/rtla: Fix clang warning about mount_point var size clang is reporting this warning: $ make HOSTCC=clang CC=clang LLVM_IAS=1 [...] clang -O -g -DVERSION=\"6.8.0-rc3\" -flto=auto -fexceptions -fstack-protector-strong -fasynchronous-unwind-tables -fstack-clash-protection -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -Wp,-D_GLIBCXX_ASSERTIONS $(pkg-config --cflags libtracefs) -c -o src/utils.o src/utils.c src/utils.c:548:66: warning: 'fscanf' may overflow; destination buffer in argument 3 has size 1024, but the corresponding specifier may require size 1025 [-Wfortify-source] 548 | while (fscanf(fp, "%*s %" STR(MAX_PATH) "s %99s %*s %*d %*d\n", mount_point, type) == 2) { | ^ Increase mount_point variable size to MAX_PATH+1 to avoid the overflow.
CVE-2024-26817 In the Linux kernel, the following vulnerability has been resolved: amdkfd: use calloc instead of kzalloc to avoid integer overflow This uses calloc instead of doing the multiplication which might overflow.
CVE-2024-26816 In the Linux kernel, the following vulnerability has been resolved: x86, relocs: Ignore relocations in .notes section When building with CONFIG_XEN_PV=y, .text symbols are emitted into the .notes section so that Xen can find the "startup_xen" entry point. This information is used prior to booting the kernel, so relocations are not useful. In fact, performing relocations against the .notes section means that the KASLR base is exposed since /sys/kernel/notes is world-readable. To avoid leaking the KASLR base without breaking unprivileged tools that are expecting to read /sys/kernel/notes, skip performing relocations in the .notes section. The values readable in .notes are then identical to those found in System.map.
CVE-2024-26815 In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: proper TCA_TAPRIO_TC_ENTRY_INDEX check taprio_parse_tc_entry() is not correctly checking TCA_TAPRIO_TC_ENTRY_INDEX attribute: int tc; // Signed value tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); if (tc >= TC_QOPT_MAX_QUEUE) { NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); return -ERANGE; } syzbot reported that it could fed arbitary negative values: UBSAN: shift-out-of-bounds in net/sched/sch_taprio.c:1722:18 shift exponent -2147418108 is negative CPU: 0 PID: 5066 Comm: syz-executor367 Not tainted 6.8.0-rc7-syzkaller-00136-gc8a5c731fd12 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:217 [inline] __ubsan_handle_shift_out_of_bounds+0x3c7/0x420 lib/ubsan.c:386 taprio_parse_tc_entry net/sched/sch_taprio.c:1722 [inline] taprio_parse_tc_entries net/sched/sch_taprio.c:1768 [inline] taprio_change+0xb87/0x57d0 net/sched/sch_taprio.c:1877 taprio_init+0x9da/0xc80 net/sched/sch_taprio.c:2134 qdisc_create+0x9d4/0x1190 net/sched/sch_api.c:1355 tc_modify_qdisc+0xa26/0x1e40 net/sched/sch_api.c:1776 rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6617 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367 netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f1b2dea3759 Code: 48 83 c4 28 c3 e8 d7 19 00 00 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffd4de452f8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f1b2def0390 RCX: 00007f1b2dea3759 RDX: 0000000000000000 RSI: 00000000200007c0 RDI: 0000000000000004 RBP: 0000000000000003 R08: 0000555500000000 R09: 0000555500000000 R10: 0000555500000000 R11: 0000000000000246 R12: 00007ffd4de45340 R13: 00007ffd4de45310 R14: 0000000000000001 R15: 00007ffd4de45340
CVE-2024-26814 In the Linux kernel, the following vulnerability has been resolved: vfio/fsl-mc: Block calling interrupt handler without trigger The eventfd_ctx trigger pointer of the vfio_fsl_mc_irq object is initially NULL and may become NULL if the user sets the trigger eventfd to -1. The interrupt handler itself is guaranteed that trigger is always valid between request_irq() and free_irq(), but the loopback testing mechanisms to invoke the handler function need to test the trigger. The triggering and setting ioctl paths both make use of igate and are therefore mutually exclusive. The vfio-fsl-mc driver does not make use of irqfds, nor does it support any sort of masking operations, therefore unlike vfio-pci and vfio-platform, the flow can remain essentially unchanged.
CVE-2024-26813 In the Linux kernel, the following vulnerability has been resolved: vfio/platform: Create persistent IRQ handlers The vfio-platform SET_IRQS ioctl currently allows loopback triggering of an interrupt before a signaling eventfd has been configured by the user, which thereby allows a NULL pointer dereference. Rather than register the IRQ relative to a valid trigger, register all IRQs in a disabled state in the device open path. This allows mask operations on the IRQ to nest within the overall enable state governed by a valid eventfd signal. This decouples @masked, protected by the @locked spinlock from @trigger, protected via the @igate mutex. In doing so, it's guaranteed that changes to @trigger cannot race the IRQ handlers because the IRQ handler is synchronously disabled before modifying the trigger, and loopback triggering of the IRQ via ioctl is safe due to serialization with trigger changes via igate. For compatibility, request_irq() failures are maintained to be local to the SET_IRQS ioctl rather than a fatal error in the open device path. This allows, for example, a userspace driver with polling mode support to continue to work regardless of moving the request_irq() call site. This necessarily blocks all SET_IRQS access to the failed index.
CVE-2024-26812 In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Create persistent INTx handler A vulnerability exists where the eventfd for INTx signaling can be deconfigured, which unregisters the IRQ handler but still allows eventfds to be signaled with a NULL context through the SET_IRQS ioctl or through unmask irqfd if the device interrupt is pending. Ideally this could be solved with some additional locking; the igate mutex serializes the ioctl and config space accesses, and the interrupt handler is unregistered relative to the trigger, but the irqfd path runs asynchronous to those. The igate mutex cannot be acquired from the atomic context of the eventfd wake function. Disabling the irqfd relative to the eventfd registration is potentially incompatible with existing userspace. As a result, the solution implemented here moves configuration of the INTx interrupt handler to track the lifetime of the INTx context object and irq_type configuration, rather than registration of a particular trigger eventfd. Synchronization is added between the ioctl path and eventfd_signal() wrapper such that the eventfd trigger can be dynamically updated relative to in-flight interrupts or irqfd callbacks.
CVE-2024-26811 In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate payload size in ipc response If installing malicious ksmbd-tools, ksmbd.mountd can return invalid ipc response to ksmbd kernel server. ksmbd should validate payload size of ipc response from ksmbd.mountd to avoid memory overrun or slab-out-of-bounds. This patch validate 3 ipc response that has payload.
CVE-2024-26810 In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Lock external INTx masking ops Mask operations through config space changes to DisINTx may race INTx configuration changes via ioctl. Create wrappers that add locking for paths outside of the core interrupt code. In particular, irq_type is updated holding igate, therefore testing is_intx() requires holding igate. For example clearing DisINTx from config space can otherwise race changes of the interrupt configuration. This aligns interfaces which may trigger the INTx eventfd into two camps, one side serialized by igate and the other only enabled while INTx is configured. A subsequent patch introduces synchronization for the latter flows.
CVE-2024-26809 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: release elements in clone only from destroy path Clone already always provides a current view of the lookup table, use it to destroy the set, otherwise it is possible to destroy elements twice. This fix requires: 212ed75dc5fb ("netfilter: nf_tables: integrate pipapo into commit protocol") which came after: 9827a0e6e23b ("netfilter: nft_set_pipapo: release elements in clone from abort path").
CVE-2024-26808 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER event is reported, otherwise a stale reference to netdevice remains in the hook list.
CVE-2024-26807 In the Linux kernel, the following vulnerability has been resolved: spi: cadence-qspi: fix pointer reference in runtime PM hooks dev_get_drvdata() gets used to acquire the pointer to cqspi and the SPI controller. Neither embed the other; this lead to memory corruption. On a given platform (Mobileye EyeQ5) the memory corruption is hidden inside cqspi->f_pdata. Also, this uninitialised memory is used as a mutex (ctlr->bus_lock_mutex) by spi_controller_suspend().
CVE-2024-26806 In the Linux kernel, the following vulnerability has been resolved: spi: cadence-qspi: remove system-wide suspend helper calls from runtime PM hooks The ->runtime_suspend() and ->runtime_resume() callbacks are not expected to call spi_controller_suspend() and spi_controller_resume(). Remove calls to those in the cadence-qspi driver. Those helpers have two roles currently: - They stop/start the queue, including dealing with the kworker. - They toggle the SPI controller SPI_CONTROLLER_SUSPENDED flag. It requires acquiring ctlr->bus_lock_mutex. Step one is irrelevant because cadence-qspi is not queued. Step two however has two implications: - A deadlock occurs, because ->runtime_resume() is called in a context where the lock is already taken (in the ->exec_op() callback, where the usage count is incremented). - It would disallow all operations once the device is auto-suspended. Here is a brief call tree highlighting the mutex deadlock: spi_mem_exec_op() ... spi_mem_access_start() mutex_lock(&ctlr->bus_lock_mutex) cqspi_exec_mem_op() pm_runtime_resume_and_get() cqspi_resume() spi_controller_resume() mutex_lock(&ctlr->bus_lock_mutex) ... spi_mem_access_end() mutex_unlock(&ctlr->bus_lock_mutex) ...
CVE-2024-26805 In the Linux kernel, the following vulnerability has been resolved: netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter syzbot reported the following uninit-value access issue [1]: netlink_to_full_skb() creates a new `skb` and puts the `skb->data` passed as a 1st arg of netlink_to_full_skb() onto new `skb`. The data size is specified as `len` and passed to skb_put_data(). This `len` is based on `skb->end` that is not data offset but buffer offset. The `skb->end` contains data and tailroom. Since the tailroom is not initialized when the new `skb` created, KMSAN detects uninitialized memory area when copying the data. This patch resolved this issue by correct the len from `skb->end` to `skb->len`, which is the actual data offset. BUG: KMSAN: kernel-infoleak-after-free in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak-after-free in copy_to_user_iter lib/iov_iter.c:24 [inline] BUG: KMSAN: kernel-infoleak-after-free in iterate_ubuf include/linux/iov_iter.h:29 [inline] BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance2 include/linux/iov_iter.h:245 [inline] BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance include/linux/iov_iter.h:271 [inline] BUG: KMSAN: kernel-infoleak-after-free in _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186 instrument_copy_to_user include/linux/instrumented.h:114 [inline] copy_to_user_iter lib/iov_iter.c:24 [inline] iterate_ubuf include/linux/iov_iter.h:29 [inline] iterate_and_advance2 include/linux/iov_iter.h:245 [inline] iterate_and_advance include/linux/iov_iter.h:271 [inline] _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186 copy_to_iter include/linux/uio.h:197 [inline] simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:532 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:420 skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546 skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline] packet_recvmsg+0xd9c/0x2000 net/packet/af_packet.c:3482 sock_recvmsg_nosec net/socket.c:1044 [inline] sock_recvmsg net/socket.c:1066 [inline] sock_read_iter+0x467/0x580 net/socket.c:1136 call_read_iter include/linux/fs.h:2014 [inline] new_sync_read fs/read_write.c:389 [inline] vfs_read+0x8f6/0xe00 fs/read_write.c:470 ksys_read+0x20f/0x4c0 fs/read_write.c:613 __do_sys_read fs/read_write.c:623 [inline] __se_sys_read fs/read_write.c:621 [inline] __x64_sys_read+0x93/0xd0 fs/read_write.c:621 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was stored to memory at: skb_put_data include/linux/skbuff.h:2622 [inline] netlink_to_full_skb net/netlink/af_netlink.c:181 [inline] __netlink_deliver_tap_skb net/netlink/af_netlink.c:298 [inline] __netlink_deliver_tap+0x5be/0xc90 net/netlink/af_netlink.c:325 netlink_deliver_tap net/netlink/af_netlink.c:338 [inline] netlink_deliver_tap_kernel net/netlink/af_netlink.c:347 [inline] netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x10f1/0x1250 net/netlink/af_netlink.c:1368 netlink_sendmsg+0x1238/0x13d0 net/netlink/af_netlink.c:1910 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x490 net/socket.c:2674 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: free_pages_prepare mm/page_alloc.c:1087 [inline] free_unref_page_prepare+0xb0/0xa40 mm/page_alloc.c:2347 free_unref_page_list+0xeb/0x1100 mm/page_alloc.c:2533 release_pages+0x23d3/0x2410 mm/swap.c:1042 free_pages_and_swap_cache+0xd9/0xf0 mm/swap_state.c:316 tlb_batch_pages ---truncated---
CVE-2024-26804 In the Linux kernel, the following vulnerability has been resolved: net: ip_tunnel: prevent perpetual headroom growth syzkaller triggered following kasan splat: BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191 [..] kasan_report+0xda/0x110 mm/kasan/report.c:588 __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline] ___skb_get_hash net/core/flow_dissector.c:1791 [inline] __skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856 skb_get_hash include/linux/skbuff.h:1556 [inline] ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748 ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 __dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592 ... ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235 ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323 .. iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82 ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831 ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 ... The splat occurs because skb->data points past skb->head allocated area. This is because neigh layer does: __skb_pull(skb, skb_network_offset(skb)); ... but skb_network_offset() returns a negative offset and __skb_pull() arg is unsigned. IOW, we skb->data gets "adjusted" by a huge value. The negative value is returned because skb->head and skb->data distance is more than 64k and skb->network_header (u16) has wrapped around. The bug is in the ip_tunnel infrastructure, which can cause dev->needed_headroom to increment ad infinitum. The syzkaller reproducer consists of packets getting routed via a gre tunnel, and route of gre encapsulated packets pointing at another (ipip) tunnel. The ipip encapsulation finds gre0 as next output device. This results in the following pattern: 1). First packet is to be sent out via gre0. Route lookup found an output device, ipip0. 2). ip_tunnel_xmit for gre0 bumps gre0->needed_headroom based on the future output device, rt.dev->needed_headroom (ipip0). 3). ip output / start_xmit moves skb on to ipip0. which runs the same code path again (xmit recursion). 4). Routing step for the post-gre0-encap packet finds gre0 as output device to use for ipip0 encapsulated packet. tunl0->needed_headroom is then incremented based on the (already bumped) gre0 device headroom. This repeats for every future packet: gre0->needed_headroom gets inflated because previous packets' ipip0 step incremented rt->dev (gre0) headroom, and ipip0 incremented because gre0 needed_headroom was increased. For each subsequent packet, gre/ipip0->needed_headroom grows until post-expand-head reallocations result in a skb->head/data distance of more than 64k. Once that happens, skb->network_header (u16) wraps around when pskb_expand_head tries to make sure that skb_network_offset() is unchanged after the headroom expansion/reallocation. After this skb_network_offset(skb) returns a different (and negative) result post headroom expansion. The next trip to neigh layer (or anything else that would __skb_pull the network header) makes skb->data point to a memory location outside skb->head area. v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to prevent perpetual increase instead of dropping the headroom increment completely.
CVE-2024-26803 In the Linux kernel, the following vulnerability has been resolved: net: veth: clear GRO when clearing XDP even when down veth sets NETIF_F_GRO automatically when XDP is enabled, because both features use the same NAPI machinery. The logic to clear NETIF_F_GRO sits in veth_disable_xdp() which is called both on ndo_stop and when XDP is turned off. To avoid the flag from being cleared when the device is brought down, the clearing is skipped when IFF_UP is not set. Bringing the device down should indeed not modify its features. Unfortunately, this means that clearing is also skipped when XDP is disabled _while_ the device is down. And there's nothing on the open path to bring the device features back into sync. IOW if user enables XDP, disables it and then brings the device up we'll end up with a stray GRO flag set but no NAPI instances. We don't depend on the GRO flag on the datapath, so the datapath won't crash. We will crash (or hang), however, next time features are sync'ed (either by user via ethtool or peer changing its config). The GRO flag will go away, and veth will try to disable the NAPIs. But the open path never created them since XDP was off, the GRO flag was a stray. If NAPI was initialized before we'll hang in napi_disable(). If it never was we'll crash trying to stop uninitialized hrtimer. Move the GRO flag updates to the XDP enable / disable paths, instead of mixing them with the ndo_open / ndo_close paths.
CVE-2024-26802 In the Linux kernel, the following vulnerability has been resolved: stmmac: Clear variable when destroying workqueue Currently when suspending driver and stopping workqueue it is checked whether workqueue is not NULL and if so, it is destroyed. Function destroy_workqueue() does drain queue and does clear variable, but it does not set workqueue variable to NULL. This can cause kernel/module panic if code attempts to clear workqueue that was not initialized. This scenario is possible when resuming suspended driver in stmmac_resume(), because there is no handling for failed stmmac_hw_setup(), which can fail and return if DMA engine has failed to initialize, and workqueue is initialized after DMA engine. Should DMA engine fail to initialize, resume will proceed normally, but interface won't work and TX queue will eventually timeout, causing 'Reset adapter' error. This then does destroy workqueue during reset process. And since workqueue is initialized after DMA engine and can be skipped, it will cause kernel/module panic. To secure against this possible crash, set workqueue variable to NULL when destroying workqueue. Log/backtrace from crash goes as follows: [88.031977]------------[ cut here ]------------ [88.031985]NETDEV WATCHDOG: eth0 (sxgmac): transmit queue 1 timed out [88.032017]WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:477 dev_watchdog+0x390/0x398 <Skipping backtrace for watchdog timeout> [88.032251]---[ end trace e70de432e4d5c2c0 ]--- [88.032282]sxgmac 16d88000.ethernet eth0: Reset adapter. [88.036359]------------[ cut here ]------------ [88.036519]Call trace: [88.036523] flush_workqueue+0x3e4/0x430 [88.036528] drain_workqueue+0xc4/0x160 [88.036533] destroy_workqueue+0x40/0x270 [88.036537] stmmac_fpe_stop_wq+0x4c/0x70 [88.036541] stmmac_release+0x278/0x280 [88.036546] __dev_close_many+0xcc/0x158 [88.036551] dev_close_many+0xbc/0x190 [88.036555] dev_close.part.0+0x70/0xc0 [88.036560] dev_close+0x24/0x30 [88.036564] stmmac_service_task+0x110/0x140 [88.036569] process_one_work+0x1d8/0x4a0 [88.036573] worker_thread+0x54/0x408 [88.036578] kthread+0x164/0x170 [88.036583] ret_from_fork+0x10/0x20 [88.036588]---[ end trace e70de432e4d5c2c1 ]--- [88.036597]Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004
CVE-2024-26801 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Avoid potential use-after-free in hci_error_reset While handling the HCI_EV_HARDWARE_ERROR event, if the underlying BT controller is not responding, the GPIO reset mechanism would free the hci_dev and lead to a use-after-free in hci_error_reset. Here's the call trace observed on a ChromeOS device with Intel AX201: queue_work_on+0x3e/0x6c __hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth <HASH:3b4a6>] ? init_wait_entry+0x31/0x31 __hci_cmd_sync+0x16/0x20 [bluetooth <HASH:3b4a 6>] hci_error_reset+0x4f/0xa4 [bluetooth <HASH:3b4a 6>] process_one_work+0x1d8/0x33f worker_thread+0x21b/0x373 kthread+0x13a/0x152 ? pr_cont_work+0x54/0x54 ? kthread_blkcg+0x31/0x31 ret_from_fork+0x1f/0x30 This patch holds the reference count on the hci_dev while processing a HCI_EV_HARDWARE_ERROR event to avoid potential crash.
CVE-2024-26800 In the Linux kernel, the following vulnerability has been resolved: tls: fix use-after-free on failed backlog decryption When the decrypt request goes to the backlog and crypto_aead_decrypt returns -EBUSY, tls_do_decryption will wait until all async decryptions have completed. If one of them fails, tls_do_decryption will return -EBADMSG and tls_decrypt_sg jumps to the error path, releasing all the pages. But the pages have been passed to the async callback, and have already been released by tls_decrypt_done. The only true async case is when crypto_aead_decrypt returns -EINPROGRESS. With -EBUSY, we already waited so we can tell tls_sw_recvmsg that the data is available for immediate copy, but we need to notify tls_decrypt_sg (via the new ->async_done flag) that the memory has already been released.
CVE-2024-26799 In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Fix uninitialized pointer dmactl In the case where __lpass_get_dmactl_handle is called and the driver id dai_id is invalid the pointer dmactl is not being assigned a value, and dmactl contains a garbage value since it has not been initialized and so the null check may not work. Fix this to initialize dmactl to NULL. One could argue that modern compilers will set this to zero, but it is useful to keep this initialized as per the same way in functions __lpass_platform_codec_intf_init and lpass_cdc_dma_daiops_hw_params. Cleans up clang scan build warning: sound/soc/qcom/lpass-cdc-dma.c:275:7: warning: Branch condition evaluates to a garbage value [core.uninitialized.Branch]
CVE-2024-26798 In the Linux kernel, the following vulnerability has been resolved: fbcon: always restore the old font data in fbcon_do_set_font() Commit a5a923038d70 (fbdev: fbcon: Properly revert changes when vc_resize() failed) started restoring old font data upon failure (of vc_resize()). But it performs so only for user fonts. It means that the "system"/internal fonts are not restored at all. So in result, the very first call to fbcon_do_set_font() performs no restore at all upon failing vc_resize(). This can be reproduced by Syzkaller to crash the system on the next invocation of font_get(). It's rather hard to hit the allocation failure in vc_resize() on the first font_set(), but not impossible. Esp. if fault injection is used to aid the execution/failure. It was demonstrated by Sirius: BUG: unable to handle page fault for address: fffffffffffffff8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD cb7b067 P4D cb7b067 PUD cb7d067 PMD 0 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 8007 Comm: poc Not tainted 6.7.0-g9d1694dc91ce #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:fbcon_get_font+0x229/0x800 drivers/video/fbdev/core/fbcon.c:2286 Call Trace: <TASK> con_font_get drivers/tty/vt/vt.c:4558 [inline] con_font_op+0x1fc/0xf20 drivers/tty/vt/vt.c:4673 vt_k_ioctl drivers/tty/vt/vt_ioctl.c:474 [inline] vt_ioctl+0x632/0x2ec0 drivers/tty/vt/vt_ioctl.c:752 tty_ioctl+0x6f8/0x1570 drivers/tty/tty_io.c:2803 vfs_ioctl fs/ioctl.c:51 [inline] ... So restore the font data in any case, not only for user fonts. Note the later 'if' is now protected by 'old_userfont' and not 'old_data' as the latter is always set now. (And it is supposed to be non-NULL. Otherwise we would see the bug above again.)
CVE-2024-26797 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Prevent potential buffer overflow in map_hw_resources Adds a check in the map_hw_resources function to prevent a potential buffer overflow. The function was accessing arrays using an index that could potentially be greater than the size of the arrays, leading to a buffer overflow. Adds a check to ensure that the index is within the bounds of the arrays. If the index is out of bounds, an error message is printed and break it will continue execution with just ignoring extra data early to prevent the buffer overflow. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/dml2/dml2_wrapper.c:79 map_hw_resources() error: buffer overflow 'dml2->v20.scratch.dml_to_dc_pipe_mapping.disp_cfg_to_stream_id' 6 <= 7 drivers/gpu/drm/amd/amdgpu/../display/dc/dml2/dml2_wrapper.c:81 map_hw_resources() error: buffer overflow 'dml2->v20.scratch.dml_to_dc_pipe_mapping.disp_cfg_to_plane_id' 6 <= 7
CVE-2024-26796 In the Linux kernel, the following vulnerability has been resolved: drivers: perf: ctr_get_width function for legacy is not defined With parameters CONFIG_RISCV_PMU_LEGACY=y and CONFIG_RISCV_PMU_SBI=n linux kernel crashes when you try perf record: $ perf record ls [ 46.749286] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 46.750199] Oops [#1] [ 46.750342] Modules linked in: [ 46.750608] CPU: 0 PID: 107 Comm: perf-exec Not tainted 6.6.0 #2 [ 46.750906] Hardware name: riscv-virtio,qemu (DT) [ 46.751184] epc : 0x0 [ 46.751430] ra : arch_perf_update_userpage+0x54/0x13e [ 46.751680] epc : 0000000000000000 ra : ffffffff8072ee52 sp : ff2000000022b8f0 [ 46.751958] gp : ffffffff81505988 tp : ff6000000290d400 t0 : ff2000000022b9c0 [ 46.752229] t1 : 0000000000000001 t2 : 0000000000000003 s0 : ff2000000022b930 [ 46.752451] s1 : ff600000028fb000 a0 : 0000000000000000 a1 : ff600000028fb000 [ 46.752673] a2 : 0000000ae2751268 a3 : 00000000004fb708 a4 : 0000000000000004 [ 46.752895] a5 : 0000000000000000 a6 : 000000000017ffe3 a7 : 00000000000000d2 [ 46.753117] s2 : ff600000028fb000 s3 : 0000000ae2751268 s4 : 0000000000000000 [ 46.753338] s5 : ffffffff8153e290 s6 : ff600000863b9000 s7 : ff60000002961078 [ 46.753562] s8 : ff60000002961048 s9 : ff60000002961058 s10: 0000000000000001 [ 46.753783] s11: 0000000000000018 t3 : ffffffffffffffff t4 : ffffffffffffffff [ 46.754005] t5 : ff6000000292270c t6 : ff2000000022bb30 [ 46.754179] status: 0000000200000100 badaddr: 0000000000000000 cause: 000000000000000c [ 46.754653] Code: Unable to access instruction at 0xffffffffffffffec. [ 46.754939] ---[ end trace 0000000000000000 ]--- [ 46.755131] note: perf-exec[107] exited with irqs disabled [ 46.755546] note: perf-exec[107] exited with preempt_count 4 This happens because in the legacy case the ctr_get_width function was not defined, but it is used in arch_perf_update_userpage. Also remove extra check in riscv_pmu_ctr_get_width_mask
CVE-2024-26795 In the Linux kernel, the following vulnerability has been resolved: riscv: Sparse-Memory/vmemmap out-of-bounds fix Offset vmemmap so that the first page of vmemmap will be mapped to the first page of physical memory in order to ensure that vmemmap&#8217;s bounds will be respected during pfn_to_page()/page_to_pfn() operations. The conversion macros will produce correct SV39/48/57 addresses for every possible/valid DRAM_BASE inside the physical memory limits. v2:Address Alex's comments
CVE-2024-26794 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between ordered extent completion and fiemap For fiemap we recently stopped locking the target extent range for the whole duration of the fiemap call, in order to avoid a deadlock in a scenario where the fiemap buffer happens to be a memory mapped range of the same file. This use case is very unlikely to be useful in practice but it may be triggered by fuzz testing (syzbot, etc). However by not locking the target extent range for the whole duration of the fiemap call we can race with an ordered extent. This happens like this: 1) The fiemap task finishes processing a file extent item that covers the file range [512K, 1M[, and that file extent item is the last item in the leaf currently being processed; 2) And ordered extent for the file range [768K, 2M[, in COW mode, completes (btrfs_finish_one_ordered()) and the file extent item covering the range [512K, 1M[ is trimmed to cover the range [512K, 768K[ and then a new file extent item for the range [768K, 2M[ is inserted in the inode's subvolume tree; 3) The fiemap task calls fiemap_next_leaf_item(), which then calls btrfs_next_leaf() to find the next leaf / item. This finds that the the next key following the one we previously processed (its type is BTRFS_EXTENT_DATA_KEY and its offset is 512K), is the key corresponding to the new file extent item inserted by the ordered extent, which has a type of BTRFS_EXTENT_DATA_KEY and an offset of 768K; 4) Later the fiemap code ends up at emit_fiemap_extent() and triggers the warning: if (cache->offset + cache->len > offset) { WARN_ON(1); return -EINVAL; } Since we get 1M > 768K, because the previously emitted entry for the old extent covering the file range [512K, 1M[ ends at an offset that is greater than the new extent's start offset (768K). This makes fiemap fail with -EINVAL besides triggering the warning that produces a stack trace like the following: [1621.677651] ------------[ cut here ]------------ [1621.677656] WARNING: CPU: 1 PID: 204366 at fs/btrfs/extent_io.c:2492 emit_fiemap_extent+0x84/0x90 [btrfs] [1621.677899] Modules linked in: btrfs blake2b_generic (...) [1621.677951] CPU: 1 PID: 204366 Comm: pool Not tainted 6.8.0-rc5-btrfs-next-151+ #1 [1621.677954] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [1621.677956] RIP: 0010:emit_fiemap_extent+0x84/0x90 [btrfs] [1621.678033] Code: 2b 4c 89 63 (...) [1621.678035] RSP: 0018:ffffab16089ffd20 EFLAGS: 00010206 [1621.678037] RAX: 00000000004fa000 RBX: ffffab16089ffe08 RCX: 0000000000009000 [1621.678039] RDX: 00000000004f9000 RSI: 00000000004f1000 RDI: ffffab16089ffe90 [1621.678040] RBP: 00000000004f9000 R08: 0000000000001000 R09: 0000000000000000 [1621.678041] R10: 0000000000000000 R11: 0000000000001000 R12: 0000000041d78000 [1621.678043] R13: 0000000000001000 R14: 0000000000000000 R15: ffff9434f0b17850 [1621.678044] FS: 00007fa6e20006c0(0000) GS:ffff943bdfa40000(0000) knlGS:0000000000000000 [1621.678046] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1621.678048] CR2: 00007fa6b0801000 CR3: 000000012d404002 CR4: 0000000000370ef0 [1621.678053] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [1621.678055] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [1621.678056] Call Trace: [1621.678074] <TASK> [1621.678076] ? __warn+0x80/0x130 [1621.678082] ? emit_fiemap_extent+0x84/0x90 [btrfs] [1621.678159] ? report_bug+0x1f4/0x200 [1621.678164] ? handle_bug+0x42/0x70 [1621.678167] ? exc_invalid_op+0x14/0x70 [1621.678170] ? asm_exc_invalid_op+0x16/0x20 [1621.678178] ? emit_fiemap_extent+0x84/0x90 [btrfs] [1621.678253] extent_fiemap+0x766 ---truncated---
CVE-2024-26793 In the Linux kernel, the following vulnerability has been resolved: gtp: fix use-after-free and null-ptr-deref in gtp_newlink() The gtp_link_ops operations structure for the subsystem must be registered after registering the gtp_net_ops pernet operations structure. Syzkaller hit 'general protection fault in gtp_genl_dump_pdp' bug: [ 1010.702740] gtp: GTP module unloaded [ 1010.715877] general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] SMP KASAN NOPTI [ 1010.715888] KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] [ 1010.715895] CPU: 1 PID: 128616 Comm: a.out Not tainted 6.8.0-rc6-std-def-alt1 #1 [ 1010.715899] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-alt1 04/01/2014 [ 1010.715908] RIP: 0010:gtp_newlink+0x4d7/0x9c0 [gtp] [ 1010.715915] Code: 80 3c 02 00 0f 85 41 04 00 00 48 8b bb d8 05 00 00 e8 ed f6 ff ff 48 89 c2 48 89 c5 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 4f 04 00 00 4c 89 e2 4c 8b 6d 00 48 b8 00 00 00 [ 1010.715920] RSP: 0018:ffff888020fbf180 EFLAGS: 00010203 [ 1010.715929] RAX: dffffc0000000000 RBX: ffff88800399c000 RCX: 0000000000000000 [ 1010.715933] RDX: 0000000000000001 RSI: ffffffff84805280 RDI: 0000000000000282 [ 1010.715938] RBP: 000000000000000d R08: 0000000000000001 R09: 0000000000000000 [ 1010.715942] R10: 0000000000000001 R11: 0000000000000001 R12: ffff88800399cc80 [ 1010.715947] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000400 [ 1010.715953] FS: 00007fd1509ab5c0(0000) GS:ffff88805b300000(0000) knlGS:0000000000000000 [ 1010.715958] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1010.715962] CR2: 0000000000000000 CR3: 000000001c07a000 CR4: 0000000000750ee0 [ 1010.715968] PKRU: 55555554 [ 1010.715972] Call Trace: [ 1010.715985] ? __die_body.cold+0x1a/0x1f [ 1010.715995] ? die_addr+0x43/0x70 [ 1010.716002] ? exc_general_protection+0x199/0x2f0 [ 1010.716016] ? asm_exc_general_protection+0x1e/0x30 [ 1010.716026] ? gtp_newlink+0x4d7/0x9c0 [gtp] [ 1010.716034] ? gtp_net_exit+0x150/0x150 [gtp] [ 1010.716042] __rtnl_newlink+0x1063/0x1700 [ 1010.716051] ? rtnl_setlink+0x3c0/0x3c0 [ 1010.716063] ? is_bpf_text_address+0xc0/0x1f0 [ 1010.716070] ? kernel_text_address.part.0+0xbb/0xd0 [ 1010.716076] ? __kernel_text_address+0x56/0xa0 [ 1010.716084] ? unwind_get_return_address+0x5a/0xa0 [ 1010.716091] ? create_prof_cpu_mask+0x30/0x30 [ 1010.716098] ? arch_stack_walk+0x9e/0xf0 [ 1010.716106] ? stack_trace_save+0x91/0xd0 [ 1010.716113] ? stack_trace_consume_entry+0x170/0x170 [ 1010.716121] ? __lock_acquire+0x15c5/0x5380 [ 1010.716139] ? mark_held_locks+0x9e/0xe0 [ 1010.716148] ? kmem_cache_alloc_trace+0x35f/0x3c0 [ 1010.716155] ? __rtnl_newlink+0x1700/0x1700 [ 1010.716160] rtnl_newlink+0x69/0xa0 [ 1010.716166] rtnetlink_rcv_msg+0x43b/0xc50 [ 1010.716172] ? rtnl_fdb_dump+0x9f0/0x9f0 [ 1010.716179] ? lock_acquire+0x1fe/0x560 [ 1010.716188] ? netlink_deliver_tap+0x12f/0xd50 [ 1010.716196] netlink_rcv_skb+0x14d/0x440 [ 1010.716202] ? rtnl_fdb_dump+0x9f0/0x9f0 [ 1010.716208] ? netlink_ack+0xab0/0xab0 [ 1010.716213] ? netlink_deliver_tap+0x202/0xd50 [ 1010.716220] ? netlink_deliver_tap+0x218/0xd50 [ 1010.716226] ? __virt_addr_valid+0x30b/0x590 [ 1010.716233] netlink_unicast+0x54b/0x800 [ 1010.716240] ? netlink_attachskb+0x870/0x870 [ 1010.716248] ? __check_object_size+0x2de/0x3b0 [ 1010.716254] netlink_sendmsg+0x938/0xe40 [ 1010.716261] ? netlink_unicast+0x800/0x800 [ 1010.716269] ? __import_iovec+0x292/0x510 [ 1010.716276] ? netlink_unicast+0x800/0x800 [ 1010.716284] __sock_sendmsg+0x159/0x190 [ 1010.716290] ____sys_sendmsg+0x712/0x880 [ 1010.716297] ? sock_write_iter+0x3d0/0x3d0 [ 1010.716304] ? __ia32_sys_recvmmsg+0x270/0x270 [ 1010.716309] ? lock_acquire+0x1fe/0x560 [ 1010.716315] ? drain_array_locked+0x90/0x90 [ 1010.716324] ___sys_sendmsg+0xf8/0x170 [ 1010.716331] ? sendmsg_copy_msghdr+0x170/0x170 [ 1010.716337] ? lockdep_init_map ---truncated---
CVE-2024-26792 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by sy ---truncated---
CVE-2024-26791 In the Linux kernel, the following vulnerability has been resolved: btrfs: dev-replace: properly validate device names There's a syzbot report that device name buffers passed to device replace are not properly checked for string termination which could lead to a read out of bounds in getname_kernel(). Add a helper that validates both source and target device name buffers. For devid as the source initialize the buffer to empty string in case something tries to read it later. This was originally analyzed and fixed in a different way by Edward Adam Davis (see links).
CVE-2024-26790 In the Linux kernel, the following vulnerability has been resolved: dmaengine: fsl-qdma: fix SoC may hang on 16 byte unaligned read There is chip (ls1028a) errata: The SoC may hang on 16 byte unaligned read transactions by QDMA. Unaligned read transactions initiated by QDMA may stall in the NOC (Network On-Chip), causing a deadlock condition. Stalled transactions will trigger completion timeouts in PCIe controller. Workaround: Enable prefetch by setting the source descriptor prefetchable bit ( SD[PF] = 1 ). Implement this workaround.
CVE-2024-26789 In the Linux kernel, the following vulnerability has been resolved: crypto: arm64/neonbs - fix out-of-bounds access on short input The bit-sliced implementation of AES-CTR operates on blocks of 128 bytes, and will fall back to the plain NEON version for tail blocks or inputs that are shorter than 128 bytes to begin with. It will call straight into the plain NEON asm helper, which performs all memory accesses in granules of 16 bytes (the size of a NEON register). For this reason, the associated plain NEON glue code will copy inputs shorter than 16 bytes into a temporary buffer, given that this is a rare occurrence and it is not worth the effort to work around this in the asm code. The fallback from the bit-sliced NEON version fails to take this into account, potentially resulting in out-of-bounds accesses. So clone the same workaround, and use a temp buffer for short in/outputs.
CVE-2024-26788 In the Linux kernel, the following vulnerability has been resolved: dmaengine: fsl-qdma: init irq after reg initialization Initialize the qDMA irqs after the registers are configured so that interrupts that may have been pending from a primary kernel don't get processed by the irq handler before it is ready to and cause panic with the following trace: Call trace: fsl_qdma_queue_handler+0xf8/0x3e8 __handle_irq_event_percpu+0x78/0x2b0 handle_irq_event_percpu+0x1c/0x68 handle_irq_event+0x44/0x78 handle_fasteoi_irq+0xc8/0x178 generic_handle_irq+0x24/0x38 __handle_domain_irq+0x90/0x100 gic_handle_irq+0x5c/0xb8 el1_irq+0xb8/0x180 _raw_spin_unlock_irqrestore+0x14/0x40 __setup_irq+0x4bc/0x798 request_threaded_irq+0xd8/0x190 devm_request_threaded_irq+0x74/0xe8 fsl_qdma_probe+0x4d4/0xca8 platform_drv_probe+0x50/0xa0 really_probe+0xe0/0x3f8 driver_probe_device+0x64/0x130 device_driver_attach+0x6c/0x78 __driver_attach+0xbc/0x158 bus_for_each_dev+0x5c/0x98 driver_attach+0x20/0x28 bus_add_driver+0x158/0x220 driver_register+0x60/0x110 __platform_driver_register+0x44/0x50 fsl_qdma_driver_init+0x18/0x20 do_one_initcall+0x48/0x258 kernel_init_freeable+0x1a4/0x23c kernel_init+0x10/0xf8 ret_from_fork+0x10/0x18
CVE-2024-26787 In the Linux kernel, the following vulnerability has been resolved: mmc: mmci: stm32: fix DMA API overlapping mappings warning Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning: DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST, overlapping mappings aren't supported WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568 add_dma_entry+0x234/0x2f4 Modules linked in: CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1 Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT) Workqueue: events_freezable mmc_rescan Call trace: add_dma_entry+0x234/0x2f4 debug_dma_map_sg+0x198/0x350 __dma_map_sg_attrs+0xa0/0x110 dma_map_sg_attrs+0x10/0x2c sdmmc_idma_prep_data+0x80/0xc0 mmci_prep_data+0x38/0x84 mmci_start_data+0x108/0x2dc mmci_request+0xe4/0x190 __mmc_start_request+0x68/0x140 mmc_start_request+0x94/0xc0 mmc_wait_for_req+0x70/0x100 mmc_send_tuning+0x108/0x1ac sdmmc_execute_tuning+0x14c/0x210 mmc_execute_tuning+0x48/0xec mmc_sd_init_uhs_card.part.0+0x208/0x464 mmc_sd_init_card+0x318/0x89c mmc_attach_sd+0xe4/0x180 mmc_rescan+0x244/0x320 DMA API debug brings to light leaking dma-mappings as dma_map_sg and dma_unmap_sg are not correctly balanced. If an error occurs in mmci_cmd_irq function, only mmci_dma_error function is called and as this API is not managed on stm32 variant, dma_unmap_sg is never called in this error path.
CVE-2024-26786 In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix iopt_access_list_id overwrite bug Syzkaller reported the following WARN_ON: WARNING: CPU: 1 PID: 4738 at drivers/iommu/iommufd/io_pagetable.c:1360 Call Trace: iommufd_access_change_ioas+0x2fe/0x4e0 iommufd_access_destroy_object+0x50/0xb0 iommufd_object_remove+0x2a3/0x490 iommufd_object_destroy_user iommufd_access_destroy+0x71/0xb0 iommufd_test_staccess_release+0x89/0xd0 __fput+0x272/0xb50 __fput_sync+0x4b/0x60 __do_sys_close __se_sys_close __x64_sys_close+0x8b/0x110 do_syscall_x64 The mismatch between the access pointer in the list and the passed-in pointer is resulting from an overwrite of access->iopt_access_list_id, in iopt_add_access(). Called from iommufd_access_change_ioas() when xa_alloc() succeeds but iopt_calculate_iova_alignment() fails. Add a new_id in iopt_add_access() and only update iopt_access_list_id when returning successfully.
CVE-2024-26785 In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix protection fault in iommufd_test_syz_conv_iova Syzkaller reported the following bug: general protection fault, probably for non-canonical address 0xdffffc0000000038: 0000 [#1] SMP KASAN KASAN: null-ptr-deref in range [0x00000000000001c0-0x00000000000001c7] Call Trace: lock_acquire lock_acquire+0x1ce/0x4f0 down_read+0x93/0x4a0 iommufd_test_syz_conv_iova+0x56/0x1f0 iommufd_test_access_rw.isra.0+0x2ec/0x390 iommufd_test+0x1058/0x1e30 iommufd_fops_ioctl+0x381/0x510 vfs_ioctl __do_sys_ioctl __se_sys_ioctl __x64_sys_ioctl+0x170/0x1e0 do_syscall_x64 do_syscall_64+0x71/0x140 This is because the new iommufd_access_change_ioas() sets access->ioas to NULL during its process, so the lock might be gone in a concurrent racing context. Fix this by doing the same access->ioas sanity as iommufd_access_rw() and iommufd_access_pin_pages() functions do.
CVE-2024-26784 In the Linux kernel, the following vulnerability has been resolved: pmdomain: arm: Fix NULL dereference on scmi_perf_domain removal On unloading of the scmi_perf_domain module got the below splat, when in the DT provided to the system under test the '#power-domain-cells' property was missing. Indeed, this particular setup causes the probe to bail out early without giving any error, which leads to the ->remove() callback gets to run too, but without all the expected initialized structures in place. Add a check and bail out early on remove too. Call trace: scmi_perf_domain_remove+0x28/0x70 [scmi_perf_domain] scmi_dev_remove+0x28/0x40 [scmi_core] device_remove+0x54/0x90 device_release_driver_internal+0x1dc/0x240 driver_detach+0x58/0xa8 bus_remove_driver+0x78/0x108 driver_unregister+0x38/0x70 scmi_driver_unregister+0x28/0x180 [scmi_core] scmi_perf_domain_driver_exit+0x18/0xb78 [scmi_perf_domain] __arm64_sys_delete_module+0x1a8/0x2c0 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0x48/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x34/0xb8 el0t_64_sync_handler+0x100/0x130 el0t_64_sync+0x190/0x198 Code: a90153f3 f9403c14 f9414800 955f8a05 (b9400a80) ---[ end trace 0000000000000000 ]---
CVE-2024-26783 In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index With numa balancing on, when a numa system is running where a numa node doesn't have its local memory so it has no managed zones, the following oops has been observed. It's because wakeup_kswapd() is called with a wrong zone index, -1. Fixed it by checking the index before calling wakeup_kswapd(). > BUG: unable to handle page fault for address: 00000000000033f3 > #PF: supervisor read access in kernel mode > #PF: error_code(0x0000) - not-present page > PGD 0 P4D 0 > Oops: 0000 [#1] PREEMPT SMP NOPTI > CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255 > Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS > rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 > RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812) > Code: (omitted) > RSP: 0000:ffffc90004257d58 EFLAGS: 00010286 > RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003 > RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480 > RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff > R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003 > R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940 > FS: 00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0 > DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 > PKRU: 55555554 > Call Trace: > <TASK> > ? __die > ? page_fault_oops > ? __pte_offset_map_lock > ? exc_page_fault > ? asm_exc_page_fault > ? wakeup_kswapd > migrate_misplaced_page > __handle_mm_fault > handle_mm_fault > do_user_addr_fault > exc_page_fault > asm_exc_page_fault > RIP: 0033:0x55b897ba0808 > Code: (omitted) > RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287 > RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0 > RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0 > RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075 > R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000 > R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000 > </TASK>
CVE-2024-26782 In the Linux kernel, the following vulnerability has been resolved: mptcp: fix double-free on socket dismantle when MPTCP server accepts an incoming connection, it clones its listener socket. However, the pointer to 'inet_opt' for the new socket has the same value as the original one: as a consequence, on program exit it's possible to observe the following splat: BUG: KASAN: double-free in inet_sock_destruct+0x54f/0x8b0 Free of addr ffff888485950880 by task swapper/25/0 CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Not tainted 6.8.0-rc1+ #609 Hardware name: Supermicro SYS-6027R-72RF/X9DRH-7TF/7F/iTF/iF, BIOS 3.0 07/26/2013 Call Trace: <IRQ> dump_stack_lvl+0x32/0x50 print_report+0xca/0x620 kasan_report_invalid_free+0x64/0x90 __kasan_slab_free+0x1aa/0x1f0 kfree+0xed/0x2e0 inet_sock_destruct+0x54f/0x8b0 __sk_destruct+0x48/0x5b0 rcu_do_batch+0x34e/0xd90 rcu_core+0x559/0xac0 __do_softirq+0x183/0x5a4 irq_exit_rcu+0x12d/0x170 sysvec_apic_timer_interrupt+0x6b/0x80 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x16/0x20 RIP: 0010:cpuidle_enter_state+0x175/0x300 Code: 30 00 0f 84 1f 01 00 00 83 e8 01 83 f8 ff 75 e5 48 83 c4 18 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc fb 45 85 ed <0f> 89 60 ff ff ff 48 c1 e5 06 48 c7 43 18 00 00 00 00 48 83 44 2b RSP: 0018:ffff888481cf7d90 EFLAGS: 00000202 RAX: 0000000000000000 RBX: ffff88887facddc8 RCX: 0000000000000000 RDX: 1ffff1110ff588b1 RSI: 0000000000000019 RDI: ffff88887fac4588 RBP: 0000000000000004 R08: 0000000000000002 R09: 0000000000043080 R10: 0009b02ea273363f R11: ffff88887fabf42b R12: ffffffff932592e0 R13: 0000000000000004 R14: 0000000000000000 R15: 00000022c880ec80 cpuidle_enter+0x4a/0xa0 do_idle+0x310/0x410 cpu_startup_entry+0x51/0x60 start_secondary+0x211/0x270 secondary_startup_64_no_verify+0x184/0x18b </TASK> Allocated by task 6853: kasan_save_stack+0x1c/0x40 kasan_save_track+0x10/0x30 __kasan_kmalloc+0xa6/0xb0 __kmalloc+0x1eb/0x450 cipso_v4_sock_setattr+0x96/0x360 netlbl_sock_setattr+0x132/0x1f0 selinux_netlbl_socket_post_create+0x6c/0x110 selinux_socket_post_create+0x37b/0x7f0 security_socket_post_create+0x63/0xb0 __sock_create+0x305/0x450 __sys_socket_create.part.23+0xbd/0x130 __sys_socket+0x37/0xb0 __x64_sys_socket+0x6f/0xb0 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Freed by task 6858: kasan_save_stack+0x1c/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x12c/0x1f0 kfree+0xed/0x2e0 inet_sock_destruct+0x54f/0x8b0 __sk_destruct+0x48/0x5b0 subflow_ulp_release+0x1f0/0x250 tcp_cleanup_ulp+0x6e/0x110 tcp_v4_destroy_sock+0x5a/0x3a0 inet_csk_destroy_sock+0x135/0x390 tcp_fin+0x416/0x5c0 tcp_data_queue+0x1bc8/0x4310 tcp_rcv_state_process+0x15a3/0x47b0 tcp_v4_do_rcv+0x2c1/0x990 tcp_v4_rcv+0x41fb/0x5ed0 ip_protocol_deliver_rcu+0x6d/0x9f0 ip_local_deliver_finish+0x278/0x360 ip_local_deliver+0x182/0x2c0 ip_rcv+0xb5/0x1c0 __netif_receive_skb_one_core+0x16e/0x1b0 process_backlog+0x1e3/0x650 __napi_poll+0xa6/0x500 net_rx_action+0x740/0xbb0 __do_softirq+0x183/0x5a4 The buggy address belongs to the object at ffff888485950880 which belongs to the cache kmalloc-64 of size 64 The buggy address is located 0 bytes inside of 64-byte region [ffff888485950880, ffff8884859508c0) The buggy address belongs to the physical page: page:0000000056d1e95e refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888485950700 pfn:0x485950 flags: 0x57ffffc0000800(slab|node=1|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0057ffffc0000800 ffff88810004c640 ffffea00121b8ac0 dead000000000006 raw: ffff888485950700 0000000000200019 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888485950780: fa fb fb ---truncated---
CVE-2024-26781 In the Linux kernel, the following vulnerability has been resolved: mptcp: fix possible deadlock in subflow diag Syzbot and Eric reported a lockdep splat in the subflow diag: WARNING: possible circular locking dependency detected 6.8.0-rc4-syzkaller-00212-g40b9385dd8e6 #0 Not tainted syz-executor.2/24141 is trying to acquire lock: ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at: tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline] ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at: tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137 but task is already holding lock: ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline] ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at: inet_diag_dump_icsk+0x39f/0x1f80 net/ipv4/inet_diag.c:1038 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&h->lhash2[i].lock){+.+.}-{2:2}: lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754 __raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline] _raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154 spin_lock include/linux/spinlock.h:351 [inline] __inet_hash+0x335/0xbe0 net/ipv4/inet_hashtables.c:743 inet_csk_listen_start+0x23a/0x320 net/ipv4/inet_connection_sock.c:1261 __inet_listen_sk+0x2a2/0x770 net/ipv4/af_inet.c:217 inet_listen+0xa3/0x110 net/ipv4/af_inet.c:239 rds_tcp_listen_init+0x3fd/0x5a0 net/rds/tcp_listen.c:316 rds_tcp_init_net+0x141/0x320 net/rds/tcp.c:577 ops_init+0x352/0x610 net/core/net_namespace.c:136 __register_pernet_operations net/core/net_namespace.c:1214 [inline] register_pernet_operations+0x2cb/0x660 net/core/net_namespace.c:1283 register_pernet_device+0x33/0x80 net/core/net_namespace.c:1370 rds_tcp_init+0x62/0xd0 net/rds/tcp.c:735 do_one_initcall+0x238/0x830 init/main.c:1236 do_initcall_level+0x157/0x210 init/main.c:1298 do_initcalls+0x3f/0x80 init/main.c:1314 kernel_init_freeable+0x42f/0x5d0 init/main.c:1551 kernel_init+0x1d/0x2a0 init/main.c:1441 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242 -> #0 (k-sk_lock-AF_INET6){+.+.}-{0:0}: check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain+0x18ca/0x58e0 kernel/locking/lockdep.c:3869 __lock_acquire+0x1345/0x1fd0 kernel/locking/lockdep.c:5137 lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754 lock_sock_fast include/net/sock.h:1723 [inline] subflow_get_info+0x166/0xd20 net/mptcp/diag.c:28 tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline] tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137 inet_sk_diag_fill+0x10ed/0x1e00 net/ipv4/inet_diag.c:345 inet_diag_dump_icsk+0x55b/0x1f80 net/ipv4/inet_diag.c:1061 __inet_diag_dump+0x211/0x3a0 net/ipv4/inet_diag.c:1263 inet_diag_dump_compat+0x1c1/0x2d0 net/ipv4/inet_diag.c:1371 netlink_dump+0x59b/0xc80 net/netlink/af_netlink.c:2264 __netlink_dump_start+0x5df/0x790 net/netlink/af_netlink.c:2370 netlink_dump_start include/linux/netlink.h:338 [inline] inet_diag_rcv_msg_compat+0x209/0x4c0 net/ipv4/inet_diag.c:1405 sock_diag_rcv_msg+0xe7/0x410 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543 sock_diag_rcv+0x2a/0x40 net/core/sock_diag.c:280 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367 netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 As noted by Eric we can break the lock dependency chain avoid dumping ---truncated---
CVE-2024-26780 In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix task hung while purging oob_skb in GC. syzbot reported a task hung; at the same time, GC was looping infinitely in list_for_each_entry_safe() for OOB skb. [0] syzbot demonstrated that the list_for_each_entry_safe() was not actually safe in this case. A single skb could have references for multiple sockets. If we free such a skb in the list_for_each_entry_safe(), the current and next sockets could be unlinked in a single iteration. unix_notinflight() uses list_del_init() to unlink the socket, so the prefetched next socket forms a loop itself and list_for_each_entry_safe() never stops. Here, we must use while() and make sure we always fetch the first socket. [0]: Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 5065 Comm: syz-executor236 Not tainted 6.8.0-rc3-syzkaller-00136-g1f719a2f3fa6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:preempt_count arch/x86/include/asm/preempt.h:26 [inline] RIP: 0010:check_kcov_mode kernel/kcov.c:173 [inline] RIP: 0010:__sanitizer_cov_trace_pc+0xd/0x60 kernel/kcov.c:207 Code: cc cc cc cc 66 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 65 48 8b 14 25 40 c2 03 00 <65> 8b 05 b4 7c 78 7e a9 00 01 ff 00 48 8b 34 24 74 0f f6 c4 01 74 RSP: 0018:ffffc900033efa58 EFLAGS: 00000283 RAX: ffff88807b077800 RBX: ffff88807b077800 RCX: 1ffffffff27b1189 RDX: ffff88802a5a3b80 RSI: ffffffff8968488d RDI: ffff88807b077f70 RBP: ffffc900033efbb0 R08: 0000000000000001 R09: fffffbfff27a900c R10: ffffffff93d48067 R11: ffffffff8ae000eb R12: ffff88807b077800 R13: dffffc0000000000 R14: ffff88807b077e40 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000564f4fc1e3a8 CR3: 000000000d57a000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <NMI> </NMI> <TASK> unix_gc+0x563/0x13b0 net/unix/garbage.c:319 unix_release_sock+0xa93/0xf80 net/unix/af_unix.c:683 unix_release+0x91/0xf0 net/unix/af_unix.c:1064 __sock_release+0xb0/0x270 net/socket.c:659 sock_close+0x1c/0x30 net/socket.c:1421 __fput+0x270/0xb80 fs/file_table.c:376 task_work_run+0x14f/0x250 kernel/task_work.c:180 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0xa8a/0x2ad0 kernel/exit.c:871 do_group_exit+0xd4/0x2a0 kernel/exit.c:1020 __do_sys_exit_group kernel/exit.c:1031 [inline] __se_sys_exit_group kernel/exit.c:1029 [inline] __x64_sys_exit_group+0x3e/0x50 kernel/exit.c:1029 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd5/0x270 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f9d6cbdac09 Code: Unable to access opcode bytes at 0x7f9d6cbdabdf. RSP: 002b:00007fff5952feb8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f9d6cbdac09 RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000 RBP: 00007f9d6cc552b0 R08: ffffffffffffffb8 R09: 0000000000000006 R10: 0000000000000006 R11: 0000000000000246 R12: 00007f9d6cc552b0 R13: 0000000000000000 R14: 00007f9d6cc55d00 R15: 00007f9d6cbabe70 </TASK>
CVE-2024-26779 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix race condition on enabling fast-xmit fast-xmit must only be enabled after the sta has been uploaded to the driver, otherwise it could end up passing the not-yet-uploaded sta via drv_tx calls to the driver, leading to potential crashes because of uninitialized drv_priv data. Add a missing sta->uploaded check and re-check fast xmit after inserting a sta.
CVE-2024-26778 In the Linux kernel, the following vulnerability has been resolved: fbdev: savage: Error out if pixclock equals zero The userspace program could pass any values to the driver through ioctl() interface. If the driver doesn't check the value of pixclock, it may cause divide-by-zero error. Although pixclock is checked in savagefb_decode_var(), but it is not checked properly in savagefb_probe(). Fix this by checking whether pixclock is zero in the function savagefb_check_var() before info->var.pixclock is used as the divisor. This is similar to CVE-2022-3061 in i740fb which was fixed by commit 15cf0b8.
CVE-2024-26777 In the Linux kernel, the following vulnerability has been resolved: fbdev: sis: Error out if pixclock equals zero The userspace program could pass any values to the driver through ioctl() interface. If the driver doesn't check the value of pixclock, it may cause divide-by-zero error. In sisfb_check_var(), var->pixclock is used as a divisor to caculate drate before it is checked against zero. Fix this by checking it at the beginning. This is similar to CVE-2022-3061 in i740fb which was fixed by commit 15cf0b8.
CVE-2024-26776 In the Linux kernel, the following vulnerability has been resolved: spi: hisi-sfc-v3xx: Return IRQ_NONE if no interrupts were detected Return IRQ_NONE from the interrupt handler when no interrupt was detected. Because an empty interrupt will cause a null pointer error: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 Call trace: complete+0x54/0x100 hisi_sfc_v3xx_isr+0x2c/0x40 [spi_hisi_sfc_v3xx] __handle_irq_event_percpu+0x64/0x1e0 handle_irq_event+0x7c/0x1cc
CVE-2024-26775 In the Linux kernel, the following vulnerability has been resolved: aoe: avoid potential deadlock at set_capacity Move set_capacity() outside of the section procected by (&d->lock). To avoid possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- [1] lock(&bdev->bd_size_lock); local_irq_disable(); [2] lock(&d->lock); [3] lock(&bdev->bd_size_lock); <Interrupt> [4] lock(&d->lock); *** DEADLOCK *** Where [1](&bdev->bd_size_lock) hold by zram_add()->set_capacity(). [2]lock(&d->lock) hold by aoeblk_gdalloc(). And aoeblk_gdalloc() is trying to acquire [3](&bdev->bd_size_lock) at set_capacity() call. In this situation an attempt to acquire [4]lock(&d->lock) from aoecmd_cfg_rsp() will lead to deadlock. So the simplest solution is breaking lock dependency [2](&d->lock) -> [3](&bdev->bd_size_lock) by moving set_capacity() outside.
CVE-2024-26774 In the Linux kernel, the following vulnerability has been resolved: ext4: avoid dividing by 0 in mb_update_avg_fragment_size() when block bitmap corrupt Determine if bb_fragments is 0 instead of determining bb_free to eliminate the risk of dividing by zero when the block bitmap is corrupted.
CVE-2024-26773 In the Linux kernel, the following vulnerability has been resolved: ext4: avoid allocating blocks from corrupted group in ext4_mb_try_best_found() Determine if the group block bitmap is corrupted before using ac_b_ex in ext4_mb_try_best_found() to avoid allocating blocks from a group with a corrupted block bitmap in the following concurrency and making the situation worse. ext4_mb_regular_allocator ext4_lock_group(sb, group) ext4_mb_good_group // check if the group bbitmap is corrupted ext4_mb_complex_scan_group // Scan group gets ac_b_ex but doesn't use it ext4_unlock_group(sb, group) ext4_mark_group_bitmap_corrupted(group) // The block bitmap was corrupted during // the group unlock gap. ext4_mb_try_best_found ext4_lock_group(ac->ac_sb, group) ext4_mb_use_best_found mb_mark_used // Allocating blocks in block bitmap corrupted group
CVE-2024-26772 In the Linux kernel, the following vulnerability has been resolved: ext4: avoid allocating blocks from corrupted group in ext4_mb_find_by_goal() Places the logic for checking if the group's block bitmap is corrupt under the protection of the group lock to avoid allocating blocks from the group with a corrupted block bitmap.
CVE-2024-26771 In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: edma: Add some null pointer checks to the edma_probe devm_kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Ensure the allocation was successful by checking the pointer validity.
CVE-2024-26770 In the Linux kernel, the following vulnerability has been resolved: HID: nvidia-shield: Add missing null pointer checks to LED initialization devm_kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Ensure the allocation was successful by checking the pointer validity. [jkosina@suse.com: tweak changelog a bit]
CVE-2024-26769 In the Linux kernel, the following vulnerability has been resolved: nvmet-fc: avoid deadlock on delete association path When deleting an association the shutdown path is deadlocking because we try to flush the nvmet_wq nested. Avoid this by deadlock by deferring the put work into its own work item.
CVE-2024-26768 In the Linux kernel, the following vulnerability has been resolved: LoongArch: Change acpi_core_pic[NR_CPUS] to acpi_core_pic[MAX_CORE_PIC] With default config, the value of NR_CPUS is 64. When HW platform has more then 64 cpus, system will crash on these platforms. MAX_CORE_PIC is the maximum cpu number in MADT table (max physical number) which can exceed the supported maximum cpu number (NR_CPUS, max logical number), but kernel should not crash. Kernel should boot cpus with NR_CPUS, let the remainder cpus stay in BIOS. The potential crash reason is that the array acpi_core_pic[NR_CPUS] can be overflowed when parsing MADT table, and it is obvious that CORE_PIC should be corresponding to physical core rather than logical core, so it is better to define the array as acpi_core_pic[MAX_CORE_PIC]. With the patch, system can boot up 64 vcpus with qemu parameter -smp 128, otherwise system will crash with the following message. [ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000420000004259, era == 90000000037a5f0c, ra == 90000000037a46ec [ 0.000000] Oops[#1]: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.8.0-rc2+ #192 [ 0.000000] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022 [ 0.000000] pc 90000000037a5f0c ra 90000000037a46ec tp 9000000003c90000 sp 9000000003c93d60 [ 0.000000] a0 0000000000000019 a1 9000000003d93bc0 a2 0000000000000000 a3 9000000003c93bd8 [ 0.000000] a4 9000000003c93a74 a5 9000000083c93a67 a6 9000000003c938f0 a7 0000000000000005 [ 0.000000] t0 0000420000004201 t1 0000000000000000 t2 0000000000000001 t3 0000000000000001 [ 0.000000] t4 0000000000000003 t5 0000000000000000 t6 0000000000000030 t7 0000000000000063 [ 0.000000] t8 0000000000000014 u0 ffffffffffffffff s9 0000000000000000 s0 9000000003caee98 [ 0.000000] s1 90000000041b0480 s2 9000000003c93da0 s3 9000000003c93d98 s4 9000000003c93d90 [ 0.000000] s5 9000000003caa000 s6 000000000a7fd000 s7 000000000f556b60 s8 000000000e0a4330 [ 0.000000] ra: 90000000037a46ec platform_init+0x214/0x250 [ 0.000000] ERA: 90000000037a5f0c efi_runtime_init+0x30/0x94 [ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE) [ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 0.000000] ECFG: 00070800 (LIE=11 VS=7) [ 0.000000] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 0.000000] BADV: 0000420000004259 [ 0.000000] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 0.000000] Modules linked in: [ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____)) [ 0.000000] Stack : 9000000003c93a14 9000000003800898 90000000041844f8 90000000037a46ec [ 0.000000] 000000000a7fd000 0000000008290000 0000000000000000 0000000000000000 [ 0.000000] 0000000000000000 0000000000000000 00000000019d8000 000000000f556b60 [ 0.000000] 000000000a7fd000 000000000f556b08 9000000003ca7700 9000000003800000 [ 0.000000] 9000000003c93e50 9000000003800898 9000000003800108 90000000037a484c [ 0.000000] 000000000e0a4330 000000000f556b60 000000000a7fd000 000000000f556b08 [ 0.000000] 9000000003ca7700 9000000004184000 0000000000200000 000000000e02b018 [ 0.000000] 000000000a7fd000 90000000037a0790 9000000003800108 0000000000000000 [ 0.000000] 0000000000000000 000000000e0a4330 000000000f556b60 000000000a7fd000 [ 0.000000] 000000000f556b08 000000000eaae298 000000000eaa5040 0000000000200000 [ 0.000000] ... [ 0.000000] Call Trace: [ 0.000000] [<90000000037a5f0c>] efi_runtime_init+0x30/0x94 [ 0.000000] [<90000000037a46ec>] platform_init+0x214/0x250 [ 0.000000] [<90000000037a484c>] setup_arch+0x124/0x45c [ 0.000000] [<90000000037a0790>] start_kernel+0x90/0x670 [ 0.000000] [<900000000378b0d8>] kernel_entry+0xd8/0xdc
CVE-2024-26767 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fixed integer types and null check locations [why]: issues fixed: - comparison with wider integer type in loop condition which can cause infinite loops - pointer dereference before null check
CVE-2024-26766 In the Linux kernel, the following vulnerability has been resolved: IB/hfi1: Fix sdma.h tx->num_descs off-by-one error Unfortunately the commit `fd8958efe877` introduced another error causing the `descs` array to overflow. This reults in further crashes easily reproducible by `sendmsg` system call. [ 1080.836473] general protection fault, probably for non-canonical address 0x400300015528b00a: 0000 [#1] PREEMPT SMP PTI [ 1080.869326] RIP: 0010:hfi1_ipoib_build_ib_tx_headers.constprop.0+0xe1/0x2b0 [hfi1] -- [ 1080.974535] Call Trace: [ 1080.976990] <TASK> [ 1081.021929] hfi1_ipoib_send_dma_common+0x7a/0x2e0 [hfi1] [ 1081.027364] hfi1_ipoib_send_dma_list+0x62/0x270 [hfi1] [ 1081.032633] hfi1_ipoib_send+0x112/0x300 [hfi1] [ 1081.042001] ipoib_start_xmit+0x2a9/0x2d0 [ib_ipoib] [ 1081.046978] dev_hard_start_xmit+0xc4/0x210 -- [ 1081.148347] __sys_sendmsg+0x59/0xa0 crash> ipoib_txreq 0xffff9cfeba229f00 struct ipoib_txreq { txreq = { list = { next = 0xffff9cfeba229f00, prev = 0xffff9cfeba229f00 }, descp = 0xffff9cfeba229f40, coalesce_buf = 0x0, wait = 0xffff9cfea4e69a48, complete = 0xffffffffc0fe0760 <hfi1_ipoib_sdma_complete>, packet_len = 0x46d, tlen = 0x0, num_desc = 0x0, desc_limit = 0x6, next_descq_idx = 0x45c, coalesce_idx = 0x0, flags = 0x0, descs = {{ qw = {0x8024000120dffb00, 0x4} # SDMA_DESC0_FIRST_DESC_FLAG (bit 63) }, { qw = { 0x3800014231b108, 0x4} }, { qw = { 0x310000e4ee0fcf0, 0x8} }, { qw = { 0x3000012e9f8000, 0x8} }, { qw = { 0x59000dfb9d0000, 0x8} }, { qw = { 0x78000e02e40000, 0x8} }} }, sdma_hdr = 0x400300015528b000, <<< invalid pointer in the tx request structure sdma_status = 0x0, SDMA_DESC0_LAST_DESC_FLAG (bit 62) complete = 0x0, priv = 0x0, txq = 0xffff9cfea4e69880, skb = 0xffff9d099809f400 } If an SDMA send consists of exactly 6 descriptors and requires dword padding (in the 7th descriptor), the sdma_txreq descriptor array is not properly expanded and the packet will overflow into the container structure. This results in a panic when the send completion runs. The exact panic varies depending on what elements of the container structure get corrupted. The fix is to use the correct expression in _pad_sdma_tx_descs() to test the need to expand the descriptor array. With this patch the crashes are no longer reproducible and the machine is stable.
CVE-2024-26765 In the Linux kernel, the following vulnerability has been resolved: LoongArch: Disable IRQ before init_fn() for nonboot CPUs Disable IRQ before init_fn() for nonboot CPUs when hotplug, in order to silence such warnings (and also avoid potential errors due to unexpected interrupts): WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:4503 rcu_cpu_starting+0x214/0x280 CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198 pc 90000000048e3334 ra 90000000047bd56c tp 900000010039c000 sp 900000010039fdd0 a0 0000000000000001 a1 0000000000000006 a2 900000000802c040 a3 0000000000000000 a4 0000000000000001 a5 0000000000000004 a6 0000000000000000 a7 90000000048e3f4c t0 0000000000000001 t1 9000000005c70968 t2 0000000004000000 t3 000000000005e56e t4 00000000000002e4 t5 0000000000001000 t6 ffffffff80000000 t7 0000000000040000 t8 9000000007931638 u0 0000000000000006 s9 0000000000000004 s0 0000000000000001 s1 9000000006356ac0 s2 9000000007244000 s3 0000000000000001 s4 0000000000000001 s5 900000000636f000 s6 7fffffffffffffff s7 9000000002123940 s8 9000000001ca55f8 ra: 90000000047bd56c tlb_init+0x24c/0x528 ERA: 90000000048e3334 rcu_cpu_starting+0x214/0x280 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 00000000 (PPLV0 -PIE -PWE) EUEN: 00000000 (-FPE -SXE -ASXE -BTE) ECFG: 00071000 (LIE=12 VS=7) ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0) PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198 Stack : 0000000000000000 9000000006375000 9000000005b61878 900000010039c000 900000010039fa30 0000000000000000 900000010039fa38 900000000619a140 9000000006456888 9000000006456880 900000010039f950 0000000000000001 0000000000000001 cb0cb028ec7e52e1 0000000002b90000 9000000100348700 0000000000000000 0000000000000001 ffffffff916d12f1 0000000000000003 0000000000040000 9000000007930370 0000000002b90000 0000000000000004 9000000006366000 900000000619a140 0000000000000000 0000000000000004 0000000000000000 0000000000000009 ffffffffffc681f2 9000000002123940 9000000001ca55f8 9000000006366000 90000000047a4828 00007ffff057ded8 00000000000000b0 0000000000000000 0000000000000000 0000000000071000 ... Call Trace: [<90000000047a4828>] show_stack+0x48/0x1a0 [<9000000005b61874>] dump_stack_lvl+0x84/0xcc [<90000000047f60ac>] __warn+0x8c/0x1e0 [<9000000005b0ab34>] report_bug+0x1b4/0x280 [<9000000005b63110>] do_bp+0x2d0/0x480 [<90000000047a2e20>] handle_bp+0x120/0x1c0 [<90000000048e3334>] rcu_cpu_starting+0x214/0x280 [<90000000047bd568>] tlb_init+0x248/0x528 [<90000000047a4c44>] per_cpu_trap_init+0x124/0x160 [<90000000047a19f4>] cpu_probe+0x494/0xa00 [<90000000047b551c>] start_secondary+0x3c/0xc0 [<9000000005b66134>] smpboot_entry+0x50/0x58
CVE-2024-26764 In the Linux kernel, the following vulnerability has been resolved: fs/aio: Restrict kiocb_set_cancel_fn() to I/O submitted via libaio If kiocb_set_cancel_fn() is called for I/O submitted via io_uring, the following kernel warning appears: WARNING: CPU: 3 PID: 368 at fs/aio.c:598 kiocb_set_cancel_fn+0x9c/0xa8 Call trace: kiocb_set_cancel_fn+0x9c/0xa8 ffs_epfile_read_iter+0x144/0x1d0 io_read+0x19c/0x498 io_issue_sqe+0x118/0x27c io_submit_sqes+0x25c/0x5fc __arm64_sys_io_uring_enter+0x104/0xab0 invoke_syscall+0x58/0x11c el0_svc_common+0xb4/0xf4 do_el0_svc+0x2c/0xb0 el0_svc+0x2c/0xa4 el0t_64_sync_handler+0x68/0xb4 el0t_64_sync+0x1a4/0x1a8 Fix this by setting the IOCB_AIO_RW flag for read and write I/O that is submitted by libaio.
CVE-2024-26763 In the Linux kernel, the following vulnerability has been resolved: dm-crypt: don't modify the data when using authenticated encryption It was said that authenticated encryption could produce invalid tag when the data that is being encrypted is modified [1]. So, fix this problem by copying the data into the clone bio first and then encrypt them inside the clone bio. This may reduce performance, but it is needed to prevent the user from corrupting the device by writing data with O_DIRECT and modifying them at the same time. [1] https://lore.kernel.org/all/20240207004723.GA35324@sol.localdomain/T/
CVE-2024-26762 In the Linux kernel, the following vulnerability has been resolved: cxl/pci: Skip to handle RAS errors if CXL.mem device is detached The PCI AER model is an awkward fit for CXL error handling. While the expectation is that a PCI device can escalate to link reset to recover from an AER event, the same reset on CXL amounts to a surprise memory hotplug of massive amounts of memory. At present, the CXL error handler attempts some optimistic error handling to unbind the device from the cxl_mem driver after reaping some RAS register values. This results in a "hopeful" attempt to unplug the memory, but there is no guarantee that will succeed. A subsequent AER notification after the memdev unbind event can no longer assume the registers are mapped. Check for memdev bind before reaping status register values to avoid crashes of the form: BUG: unable to handle page fault for address: ffa00000195e9100 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page [...] RIP: 0010:__cxl_handle_ras+0x30/0x110 [cxl_core] [...] Call Trace: <TASK> ? __die+0x24/0x70 ? page_fault_oops+0x82/0x160 ? kernelmode_fixup_or_oops+0x84/0x110 ? exc_page_fault+0x113/0x170 ? asm_exc_page_fault+0x26/0x30 ? __pfx_dpc_reset_link+0x10/0x10 ? __cxl_handle_ras+0x30/0x110 [cxl_core] ? find_cxl_port+0x59/0x80 [cxl_core] cxl_handle_rp_ras+0xbc/0xd0 [cxl_core] cxl_error_detected+0x6c/0xf0 [cxl_core] report_error_detected+0xc7/0x1c0 pci_walk_bus+0x73/0x90 pcie_do_recovery+0x23f/0x330 Longer term, the unbind and PCI_ERS_RESULT_DISCONNECT behavior might need to be replaced with a new PCI_ERS_RESULT_PANIC.
CVE-2024-26761 In the Linux kernel, the following vulnerability has been resolved: cxl/pci: Fix disabling memory if DVSEC CXL Range does not match a CFMWS window The Linux CXL subsystem is built on the assumption that HPA == SPA. That is, the host physical address (HPA) the HDM decoder registers are programmed with are system physical addresses (SPA). During HDM decoder setup, the DVSEC CXL range registers (cxl-3.1, 8.1.3.8) are checked if the memory is enabled and the CXL range is in a HPA window that is described in a CFMWS structure of the CXL host bridge (cxl-3.1, 9.18.1.3). Now, if the HPA is not an SPA, the CXL range does not match a CFMWS window and the CXL memory range will be disabled then. The HDM decoder stops working which causes system memory being disabled and further a system hang during HDM decoder initialization, typically when a CXL enabled kernel boots. Prevent a system hang and do not disable the HDM decoder if the decoder's CXL range is not found in a CFMWS window. Note the change only fixes a hardware hang, but does not implement HPA/SPA translation. Support for this can be added in a follow on patch series.
CVE-2024-26760 In the Linux kernel, the following vulnerability has been resolved: scsi: target: pscsi: Fix bio_put() for error case As of commit 066ff571011d ("block: turn bio_kmalloc into a simple kmalloc wrapper"), a bio allocated by bio_kmalloc() must be freed by bio_uninit() and kfree(). That is not done properly for the error case, hitting WARN and NULL pointer dereference in bio_free().
CVE-2024-26759 In the Linux kernel, the following vulnerability has been resolved: mm/swap: fix race when skipping swapcache When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads swapin the same entry at the same time, they get different pages (A, B). Before one thread (T0) finishes the swapin and installs page (A) to the PTE, another thread (T1) could finish swapin of page (B), swap_free the entry, then swap out the possibly modified page reusing the same entry. It breaks the pte_same check in (T0) because PTE value is unchanged, causing ABA problem. Thread (T0) will install a stalled page (A) into the PTE and cause data corruption. One possible callstack is like this: CPU0 CPU1 ---- ---- do_swap_page() do_swap_page() with same entry <direct swapin path> <direct swapin path> <alloc page A> <alloc page B> swap_read_folio() <- read to page A swap_read_folio() <- read to page B <slow on later locks or interrupt> <finished swapin first> ... set_pte_at() swap_free() <- entry is free <write to page B, now page A stalled> <swap out page B to same swap entry> pte_same() <- Check pass, PTE seems unchanged, but page A is stalled! swap_free() <- page B content lost! set_pte_at() <- staled page A installed! And besides, for ZRAM, swap_free() allows the swap device to discard the entry content, so even if page (B) is not modified, if swap_read_folio() on CPU0 happens later than swap_free() on CPU1, it may also cause data loss. To fix this, reuse swapcache_prepare which will pin the swap entry using the cache flag, and allow only one thread to swap it in, also prevent any parallel code from putting the entry in the cache. Release the pin after PT unlocked. Racers just loop and wait since it's a rare and very short event. A schedule_timeout_uninterruptible(1) call is added to avoid repeated page faults wasting too much CPU, causing livelock or adding too much noise to perf statistics. A similar livelock issue was described in commit 029c4628b2eb ("mm: swap: get rid of livelock in swapin readahead") Reproducer: This race issue can be triggered easily using a well constructed reproducer and patched brd (with a delay in read path) [1]: With latest 6.8 mainline, race caused data loss can be observed easily: $ gcc -g -lpthread test-thread-swap-race.c && ./a.out Polulating 32MB of memory region... Keep swapping out... Starting round 0... Spawning 65536 workers... 32746 workers spawned, wait for done... Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss! Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss! Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss! Round 0 Failed, 15 data loss! This reproducer spawns multiple threads sharing the same memory region using a small swap device. Every two threads updates mapped pages one by one in opposite direction trying to create a race, with one dedicated thread keep swapping out the data out using madvise. The reproducer created a reproduce rate of about once every 5 minutes, so the race should be totally possible in production. After this patch, I ran the reproducer for over a few hundred rounds and no data loss observed. Performance overhead is minimal, microbenchmark swapin 10G from 32G zram: Before: 10934698 us After: 11157121 us Cached: 13155355 us (Dropping SWP_SYNCHRONOUS_IO flag) [kasong@tencent.com: v4] Link: https://lkml.kernel.org/r/20240219082040.7495-1-ryncsn@gmail.com
CVE-2024-26758 In the Linux kernel, the following vulnerability has been resolved: md: Don't ignore suspended array in md_check_recovery() mddev_suspend() never stop sync_thread, hence it doesn't make sense to ignore suspended array in md_check_recovery(), which might cause sync_thread can't be unregistered. After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following hang can be triggered by test shell/integrity-caching.sh: 1) suspend the array: raid_postsuspend mddev_suspend 2) stop the array: raid_dtr md_stop __md_stop_writes stop_sync_thread set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_wakeup_thread_directly(mddev->sync_thread); wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3) sync thread done: md_do_sync set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); 4) daemon thread can't unregister sync thread: md_check_recovery if (mddev->suspended) return; -> return directly md_read_sync_thread clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); -> MD_RECOVERY_RUNNING can't be cleared, hence step 2 hang; This problem is not just related to dm-raid, fix it by ignoring suspended array in md_check_recovery(). And follow up patches will improve dm-raid better to frozen sync thread during suspend.
CVE-2024-26757 In the Linux kernel, the following vulnerability has been resolved: md: Don't ignore read-only array in md_check_recovery() Usually if the array is not read-write, md_check_recovery() won't register new sync_thread in the first place. And if the array is read-write and sync_thread is registered, md_set_readonly() will unregister sync_thread before setting the array read-only. md/raid follow this behavior hence there is no problem. After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following hang can be triggered by test shell/integrity-caching.sh: 1) array is read-only. dm-raid update super block: rs_update_sbs ro = mddev->ro mddev->ro = 0 -> set array read-write md_update_sb 2) register new sync thread concurrently. 3) dm-raid set array back to read-only: rs_update_sbs mddev->ro = ro 4) stop the array: raid_dtr md_stop stop_sync_thread set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_wakeup_thread_directly(mddev->sync_thread); wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5) sync thread done: md_do_sync set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); 6) daemon thread can't unregister sync thread: md_check_recovery if (!md_is_rdwr(mddev) && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return; -> -> MD_RECOVERY_RUNNING can't be cleared, hence step 4 hang; The root cause is that dm-raid manipulate 'mddev->ro' by itself, however, dm-raid really should stop sync thread before setting the array read-only. Unfortunately, I need to read more code before I can refacter the handler of 'mddev->ro' in dm-raid, hence let's fix the problem the easy way for now to prevent dm-raid regression.
CVE-2024-26756 In the Linux kernel, the following vulnerability has been resolved: md: Don't register sync_thread for reshape directly Currently, if reshape is interrupted, then reassemble the array will register sync_thread directly from pers->run(), in this case 'MD_RECOVERY_RUNNING' is set directly, however, there is no guarantee that md_do_sync() will be executed, hence stop_sync_thread() will hang because 'MD_RECOVERY_RUNNING' can't be cleared. Last patch make sure that md_do_sync() will set MD_RECOVERY_DONE, however, following hang can still be triggered by dm-raid test shell/lvconvert-raid-reshape.sh occasionally: [root@fedora ~]# cat /proc/1982/stack [<0>] stop_sync_thread+0x1ab/0x270 [md_mod] [<0>] md_frozen_sync_thread+0x5c/0xa0 [md_mod] [<0>] raid_presuspend+0x1e/0x70 [dm_raid] [<0>] dm_table_presuspend_targets+0x40/0xb0 [dm_mod] [<0>] __dm_destroy+0x2a5/0x310 [dm_mod] [<0>] dm_destroy+0x16/0x30 [dm_mod] [<0>] dev_remove+0x165/0x290 [dm_mod] [<0>] ctl_ioctl+0x4bb/0x7b0 [dm_mod] [<0>] dm_ctl_ioctl+0x11/0x20 [dm_mod] [<0>] vfs_ioctl+0x21/0x60 [<0>] __x64_sys_ioctl+0xb9/0xe0 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 Meanwhile mddev->recovery is: MD_RECOVERY_RUNNING | MD_RECOVERY_INTR | MD_RECOVERY_RESHAPE | MD_RECOVERY_FROZEN Fix this problem by remove the code to register sync_thread directly from raid10 and raid5. And let md_check_recovery() to register sync_thread.
CVE-2024-26755 In the Linux kernel, the following vulnerability has been resolved: md: Don't suspend the array for interrupted reshape md_start_sync() will suspend the array if there are spares that can be added or removed from conf, however, if reshape is still in progress, this won't happen at all or data will be corrupted(remove_and_add_spares won't be called from md_choose_sync_action for reshape), hence there is no need to suspend the array if reshape is not done yet. Meanwhile, there is a potential deadlock for raid456: 1) reshape is interrupted; 2) set one of the disk WantReplacement, and add a new disk to the array, however, recovery won't start until the reshape is finished; 3) then issue an IO across reshpae position, this IO will wait for reshape to make progress; 4) continue to reshape, then md_start_sync() found there is a spare disk that can be added to conf, mddev_suspend() is called; Step 4 and step 3 is waiting for each other, deadlock triggered. Noted this problem is found by code review, and it's not reporduced yet. Fix this porblem by don't suspend the array for interrupted reshape, this is safe because conf won't be changed until reshape is done.
CVE-2024-26754 In the Linux kernel, the following vulnerability has been resolved: gtp: fix use-after-free and null-ptr-deref in gtp_genl_dump_pdp() The gtp_net_ops pernet operations structure for the subsystem must be registered before registering the generic netlink family. Syzkaller hit 'general protection fault in gtp_genl_dump_pdp' bug: general protection fault, probably for non-canonical address 0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017] CPU: 1 PID: 5826 Comm: gtp Not tainted 6.8.0-rc3-std-def-alt1 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-alt1 04/01/2014 RIP: 0010:gtp_genl_dump_pdp+0x1be/0x800 [gtp] Code: c6 89 c6 e8 64 e9 86 df 58 45 85 f6 0f 85 4e 04 00 00 e8 c5 ee 86 df 48 8b 54 24 18 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 de 05 00 00 48 8b 44 24 18 4c 8b 30 4c 39 f0 74 RSP: 0018:ffff888014107220 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000002 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff88800fcda588 R14: 0000000000000001 R15: 0000000000000000 FS: 00007f1be4eb05c0(0000) GS:ffff88806ce80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1be4e766cf CR3: 000000000c33e000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? show_regs+0x90/0xa0 ? die_addr+0x50/0xd0 ? exc_general_protection+0x148/0x220 ? asm_exc_general_protection+0x22/0x30 ? gtp_genl_dump_pdp+0x1be/0x800 [gtp] ? __alloc_skb+0x1dd/0x350 ? __pfx___alloc_skb+0x10/0x10 genl_dumpit+0x11d/0x230 netlink_dump+0x5b9/0xce0 ? lockdep_hardirqs_on_prepare+0x253/0x430 ? __pfx_netlink_dump+0x10/0x10 ? kasan_save_track+0x10/0x40 ? __kasan_kmalloc+0x9b/0xa0 ? genl_start+0x675/0x970 __netlink_dump_start+0x6fc/0x9f0 genl_family_rcv_msg_dumpit+0x1bb/0x2d0 ? __pfx_genl_family_rcv_msg_dumpit+0x10/0x10 ? genl_op_from_small+0x2a/0x440 ? cap_capable+0x1d0/0x240 ? __pfx_genl_start+0x10/0x10 ? __pfx_genl_dumpit+0x10/0x10 ? __pfx_genl_done+0x10/0x10 ? security_capable+0x9d/0xe0
CVE-2024-26753 In the Linux kernel, the following vulnerability has been resolved: crypto: virtio/akcipher - Fix stack overflow on memcpy sizeof(struct virtio_crypto_akcipher_session_para) is less than sizeof(struct virtio_crypto_op_ctrl_req::u), copying more bytes from stack variable leads stack overflow. Clang reports this issue by commands: make -j CC=clang-14 mrproper >/dev/null 2>&1 make -j O=/tmp/crypto-build CC=clang-14 allmodconfig >/dev/null 2>&1 make -j O=/tmp/crypto-build W=1 CC=clang-14 drivers/crypto/virtio/ virtio_crypto_akcipher_algs.o
CVE-2024-26752 In the Linux kernel, the following vulnerability has been resolved: l2tp: pass correct message length to ip6_append_data l2tp_ip6_sendmsg needs to avoid accounting for the transport header twice when splicing more data into an already partially-occupied skbuff. To manage this, we check whether the skbuff contains data using skb_queue_empty when deciding how much data to append using ip6_append_data. However, the code which performed the calculation was incorrect: ulen = len + skb_queue_empty(&sk->sk_write_queue) ? transhdrlen : 0; ...due to C operator precedence, this ends up setting ulen to transhdrlen for messages with a non-zero length, which results in corrupted packets on the wire. Add parentheses to correct the calculation in line with the original intent.
CVE-2024-26751 In the Linux kernel, the following vulnerability has been resolved: ARM: ep93xx: Add terminator to gpiod_lookup_table Without the terminator, if a con_id is passed to gpio_find() that does not exist in the lookup table the function will not stop looping correctly, and eventually cause an oops.
CVE-2024-26750 In the Linux kernel, the following vulnerability has been resolved: af_unix: Drop oob_skb ref before purging queue in GC. syzbot reported another task hung in __unix_gc(). [0] The current while loop assumes that all of the left candidates have oob_skb and calling kfree_skb(oob_skb) releases the remaining candidates. However, I missed a case that oob_skb has self-referencing fd and another fd and the latter sk is placed before the former in the candidate list. Then, the while loop never proceeds, resulting the task hung. __unix_gc() has the same loop just before purging the collected skb, so we can call kfree_skb(oob_skb) there and let __skb_queue_purge() release all inflight sockets. [0]: Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 2784 Comm: kworker/u4:8 Not tainted 6.8.0-rc4-syzkaller-01028-g71b605d32017 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Workqueue: events_unbound __unix_gc RIP: 0010:__sanitizer_cov_trace_pc+0x0/0x70 kernel/kcov.c:200 Code: 89 fb e8 23 00 00 00 48 8b 3d 84 f5 1a 0c 48 89 de 5b e9 43 26 57 00 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 <f3> 0f 1e fa 48 8b 04 24 65 48 8b 0d 90 52 70 7e 65 8b 15 91 52 70 RSP: 0018:ffffc9000a17fa78 EFLAGS: 00000287 RAX: ffffffff8a0a6108 RBX: ffff88802b6c2640 RCX: ffff88802c0b3b80 RDX: 0000000000000000 RSI: 0000000000000002 RDI: 0000000000000000 RBP: ffffc9000a17fbf0 R08: ffffffff89383f1d R09: 1ffff1100ee5ff84 R10: dffffc0000000000 R11: ffffed100ee5ff85 R12: 1ffff110056d84ee R13: ffffc9000a17fae0 R14: 0000000000000000 R15: ffffffff8f47b840 FS: 0000000000000000(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffef5687ff8 CR3: 0000000029b34000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <NMI> </NMI> <TASK> __unix_gc+0xe69/0xf40 net/unix/garbage.c:343 process_one_work kernel/workqueue.c:2633 [inline] process_scheduled_works+0x913/0x1420 kernel/workqueue.c:2706 worker_thread+0xa5f/0x1000 kernel/workqueue.c:2787 kthread+0x2ef/0x390 kernel/kthread.c:388 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242 </TASK>
CVE-2024-26749 In the Linux kernel, the following vulnerability has been resolved: usb: cdns3: fixed memory use after free at cdns3_gadget_ep_disable() ... cdns3_gadget_ep_free_request(&priv_ep->endpoint, &priv_req->request); list_del_init(&priv_req->list); ... 'priv_req' actually free at cdns3_gadget_ep_free_request(). But list_del_init() use priv_req->list after it. [ 1542.642868][ T534] BUG: KFENCE: use-after-free read in __list_del_entry_valid+0x10/0xd4 [ 1542.642868][ T534] [ 1542.653162][ T534] Use-after-free read at 0x000000009ed0ba99 (in kfence-#3): [ 1542.660311][ T534] __list_del_entry_valid+0x10/0xd4 [ 1542.665375][ T534] cdns3_gadget_ep_disable+0x1f8/0x388 [cdns3] [ 1542.671571][ T534] usb_ep_disable+0x44/0xe4 [ 1542.675948][ T534] ffs_func_eps_disable+0x64/0xc8 [ 1542.680839][ T534] ffs_func_set_alt+0x74/0x368 [ 1542.685478][ T534] ffs_func_disable+0x18/0x28 Move list_del_init() before cdns3_gadget_ep_free_request() to resolve this problem.
CVE-2024-26748 In the Linux kernel, the following vulnerability has been resolved: usb: cdns3: fix memory double free when handle zero packet 829 if (request->complete) { 830 spin_unlock(&priv_dev->lock); 831 usb_gadget_giveback_request(&priv_ep->endpoint, 832 request); 833 spin_lock(&priv_dev->lock); 834 } 835 836 if (request->buf == priv_dev->zlp_buf) 837 cdns3_gadget_ep_free_request(&priv_ep->endpoint, request); Driver append an additional zero packet request when queue a packet, which length mod max packet size is 0. When transfer complete, run to line 831, usb_gadget_giveback_request() will free this requestion. 836 condition is true, so cdns3_gadget_ep_free_request() free this request again. Log: [ 1920.140696][ T150] BUG: KFENCE: use-after-free read in cdns3_gadget_giveback+0x134/0x2c0 [cdns3] [ 1920.140696][ T150] [ 1920.151837][ T150] Use-after-free read at 0x000000003d1cd10b (in kfence-#36): [ 1920.159082][ T150] cdns3_gadget_giveback+0x134/0x2c0 [cdns3] [ 1920.164988][ T150] cdns3_transfer_completed+0x438/0x5f8 [cdns3] Add check at line 829, skip call usb_gadget_giveback_request() if it is additional zero length packet request. Needn't call usb_gadget_giveback_request() because it is allocated in this driver.
CVE-2024-26747 In the Linux kernel, the following vulnerability has been resolved: usb: roles: fix NULL pointer issue when put module's reference In current design, usb role class driver will get usb_role_switch parent's module reference after the user get usb_role_switch device and put the reference after the user put the usb_role_switch device. However, the parent device of usb_role_switch may be removed before the user put the usb_role_switch. If so, then, NULL pointer issue will be met when the user put the parent module's reference. This will save the module pointer in structure of usb_role_switch. Then, we don't need to find module by iterating long relations.
CVE-2024-26746 In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Ensure safe user copy of completion record If CONFIG_HARDENED_USERCOPY is enabled, copying completion record from event log cache to user triggers a kernel bug. [ 1987.159822] usercopy: Kernel memory exposure attempt detected from SLUB object 'dsa0' (offset 74, size 31)! [ 1987.170845] ------------[ cut here ]------------ [ 1987.176086] kernel BUG at mm/usercopy.c:102! [ 1987.180946] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 1987.186866] CPU: 17 PID: 528 Comm: kworker/17:1 Not tainted 6.8.0-rc2+ #5 [ 1987.194537] Hardware name: Intel Corporation AvenueCity/AvenueCity, BIOS BHSDCRB1.86B.2492.D03.2307181620 07/18/2023 [ 1987.206405] Workqueue: wq0.0 idxd_evl_fault_work [idxd] [ 1987.212338] RIP: 0010:usercopy_abort+0x72/0x90 [ 1987.217381] Code: 58 65 9c 50 48 c7 c2 17 85 61 9c 57 48 c7 c7 98 fd 6b 9c 48 0f 44 d6 48 c7 c6 b3 08 62 9c 4c 89 d1 49 0f 44 f3 e8 1e 2e d5 ff <0f> 0b 49 c7 c1 9e 42 61 9c 4c 89 cf 4d 89 c8 eb a9 66 66 2e 0f 1f [ 1987.238505] RSP: 0018:ff62f5cf20607d60 EFLAGS: 00010246 [ 1987.244423] RAX: 000000000000005f RBX: 000000000000001f RCX: 0000000000000000 [ 1987.252480] RDX: 0000000000000000 RSI: ffffffff9c61429e RDI: 00000000ffffffff [ 1987.260538] RBP: ff62f5cf20607d78 R08: ff2a6a89ef3fffe8 R09: 00000000fffeffff [ 1987.268595] R10: ff2a6a89eed00000 R11: 0000000000000003 R12: ff2a66934849c89a [ 1987.276652] R13: 0000000000000001 R14: ff2a66934849c8b9 R15: ff2a66934849c899 [ 1987.284710] FS: 0000000000000000(0000) GS:ff2a66b22fe40000(0000) knlGS:0000000000000000 [ 1987.293850] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1987.300355] CR2: 00007fe291a37000 CR3: 000000010fbd4005 CR4: 0000000000f71ef0 [ 1987.308413] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1987.316470] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 1987.324527] PKRU: 55555554 [ 1987.327622] Call Trace: [ 1987.330424] <TASK> [ 1987.332826] ? show_regs+0x6e/0x80 [ 1987.336703] ? die+0x3c/0xa0 [ 1987.339988] ? do_trap+0xd4/0xf0 [ 1987.343662] ? do_error_trap+0x75/0xa0 [ 1987.347922] ? usercopy_abort+0x72/0x90 [ 1987.352277] ? exc_invalid_op+0x57/0x80 [ 1987.356634] ? usercopy_abort+0x72/0x90 [ 1987.360988] ? asm_exc_invalid_op+0x1f/0x30 [ 1987.365734] ? usercopy_abort+0x72/0x90 [ 1987.370088] __check_heap_object+0xb7/0xd0 [ 1987.374739] __check_object_size+0x175/0x2d0 [ 1987.379588] idxd_copy_cr+0xa9/0x130 [idxd] [ 1987.384341] idxd_evl_fault_work+0x127/0x390 [idxd] [ 1987.389878] process_one_work+0x13e/0x300 [ 1987.394435] ? __pfx_worker_thread+0x10/0x10 [ 1987.399284] worker_thread+0x2f7/0x420 [ 1987.403544] ? _raw_spin_unlock_irqrestore+0x2b/0x50 [ 1987.409171] ? __pfx_worker_thread+0x10/0x10 [ 1987.414019] kthread+0x107/0x140 [ 1987.417693] ? __pfx_kthread+0x10/0x10 [ 1987.421954] ret_from_fork+0x3d/0x60 [ 1987.426019] ? __pfx_kthread+0x10/0x10 [ 1987.430281] ret_from_fork_asm+0x1b/0x30 [ 1987.434744] </TASK> The issue arises because event log cache is created using kmem_cache_create() which is not suitable for user copy. Fix the issue by creating event log cache with kmem_cache_create_usercopy(), ensuring safe user copy.
CVE-2024-26745 In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries/iommu: IOMMU table is not initialized for kdump over SR-IOV When kdump kernel tries to copy dump data over SR-IOV, LPAR panics due to NULL pointer exception: Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc000000020847ad4 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: mlx5_core(+) vmx_crypto pseries_wdt papr_scm libnvdimm mlxfw tls psample sunrpc fuse overlay squashfs loop CPU: 12 PID: 315 Comm: systemd-udevd Not tainted 6.4.0-Test102+ #12 Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_008) hv:phyp pSeries NIP: c000000020847ad4 LR: c00000002083b2dc CTR: 00000000006cd18c REGS: c000000029162ca0 TRAP: 0300 Not tainted (6.4.0-Test102+) MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 48288244 XER: 00000008 CFAR: c00000002083b2d8 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 1 ... NIP _find_next_zero_bit+0x24/0x110 LR bitmap_find_next_zero_area_off+0x5c/0xe0 Call Trace: dev_printk_emit+0x38/0x48 (unreliable) iommu_area_alloc+0xc4/0x180 iommu_range_alloc+0x1e8/0x580 iommu_alloc+0x60/0x130 iommu_alloc_coherent+0x158/0x2b0 dma_iommu_alloc_coherent+0x3c/0x50 dma_alloc_attrs+0x170/0x1f0 mlx5_cmd_init+0xc0/0x760 [mlx5_core] mlx5_function_setup+0xf0/0x510 [mlx5_core] mlx5_init_one+0x84/0x210 [mlx5_core] probe_one+0x118/0x2c0 [mlx5_core] local_pci_probe+0x68/0x110 pci_call_probe+0x68/0x200 pci_device_probe+0xbc/0x1a0 really_probe+0x104/0x540 __driver_probe_device+0xb4/0x230 driver_probe_device+0x54/0x130 __driver_attach+0x158/0x2b0 bus_for_each_dev+0xa8/0x130 driver_attach+0x34/0x50 bus_add_driver+0x16c/0x300 driver_register+0xa4/0x1b0 __pci_register_driver+0x68/0x80 mlx5_init+0xb8/0x100 [mlx5_core] do_one_initcall+0x60/0x300 do_init_module+0x7c/0x2b0 At the time of LPAR dump, before kexec hands over control to kdump kernel, DDWs (Dynamic DMA Windows) are scanned and added to the FDT. For the SR-IOV case, default DMA window "ibm,dma-window" is removed from the FDT and DDW added, for the device. Now, kexec hands over control to the kdump kernel. When the kdump kernel initializes, PCI busses are scanned and IOMMU group/tables created, in pci_dma_bus_setup_pSeriesLP(). For the SR-IOV case, there is no "ibm,dma-window". The original commit: b1fc44eaa9ba, fixes the path where memory is pre-mapped (direct mapped) to the DDW. When TCEs are direct mapped, there is no need to initialize IOMMU tables. iommu_table_setparms_lpar() only considers "ibm,dma-window" property when initiallizing IOMMU table. In the scenario where TCEs are dynamically allocated for SR-IOV, newly created IOMMU table is not initialized. Later, when the device driver tries to enter TCEs for the SR-IOV device, NULL pointer execption is thrown from iommu_area_alloc(). The fix is to initialize the IOMMU table with DDW property stored in the FDT. There are 2 points to remember: 1. For the dedicated adapter, kdump kernel would encounter both default and DDW in FDT. In this case, DDW property is used to initialize the IOMMU table. 2. A DDW could be direct or dynamic mapped. kdump kernel would initialize IOMMU table and mark the existing DDW as "dynamic". This works fine since, at the time of table initialization, iommu_table_clear() makes some space in the DDW, for some predefined number of TCEs which are needed for kdump to succeed.
CVE-2024-26744 In the Linux kernel, the following vulnerability has been resolved: RDMA/srpt: Support specifying the srpt_service_guid parameter Make loading ib_srpt with this parameter set work. The current behavior is that setting that parameter while loading the ib_srpt kernel module triggers the following kernel crash: BUG: kernel NULL pointer dereference, address: 0000000000000000 Call Trace: <TASK> parse_one+0x18c/0x1d0 parse_args+0xe1/0x230 load_module+0x8de/0xa60 init_module_from_file+0x8b/0xd0 idempotent_init_module+0x181/0x240 __x64_sys_finit_module+0x5a/0xb0 do_syscall_64+0x5f/0xe0 entry_SYSCALL_64_after_hwframe+0x6e/0x76
CVE-2024-26743 In the Linux kernel, the following vulnerability has been resolved: RDMA/qedr: Fix qedr_create_user_qp error flow Avoid the following warning by making sure to free the allocated resources in case that qedr_init_user_queue() fail. -----------[ cut here ]----------- WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3 ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt] CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1 Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022 RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 <0f> 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286 RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016 RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600 RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80 R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0 Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? ib_uverbs_close+0x1f/0xb0 [ib_uverbs] ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ? __warn+0x81/0x110 ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ? report_bug+0x10a/0x140 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ib_uverbs_close+0x1f/0xb0 [ib_uverbs] __fput+0x94/0x250 task_work_run+0x5c/0x90 do_exit+0x270/0x4a0 do_group_exit+0x2d/0x90 get_signal+0x87c/0x8c0 arch_do_signal_or_restart+0x25/0x100 ? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs] exit_to_user_mode_loop+0x9c/0x130 exit_to_user_mode_prepare+0xb6/0x100 syscall_exit_to_user_mode+0x12/0x40 do_syscall_64+0x69/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x22/0x40 ? do_syscall_64+0x69/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x22/0x40 ? do_syscall_64+0x69/0x90 ? do_syscall_64+0x69/0x90 ? common_interrupt+0x43/0xa0 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x1470abe3ec6b Code: Unable to access opcode bytes at RIP 0x1470abe3ec41. RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004 RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00 R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358 R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470 </TASK> --[ end trace 888a9b92e04c5c97 ]--
CVE-2024-26742 In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Fix disable_managed_interrupts Correct blk-mq registration issue with module parameter disable_managed_interrupts enabled. When we turn off the default PCI_IRQ_AFFINITY flag, the driver needs to register with blk-mq using blk_mq_map_queues(). The driver is currently calling blk_mq_pci_map_queues() which results in a stack trace and possibly undefined behavior. Stack Trace: [ 7.860089] scsi host2: smartpqi [ 7.871934] WARNING: CPU: 0 PID: 238 at block/blk-mq-pci.c:52 blk_mq_pci_map_queues+0xca/0xd0 [ 7.889231] Modules linked in: sd_mod t10_pi sg uas smartpqi(+) crc32c_intel scsi_transport_sas usb_storage dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler fuse [ 7.924755] CPU: 0 PID: 238 Comm: kworker/0:3 Not tainted 4.18.0-372.88.1.el8_6_smartpqi_test.x86_64 #1 [ 7.944336] Hardware name: HPE ProLiant DL380 Gen10/ProLiant DL380 Gen10, BIOS U30 03/08/2022 [ 7.963026] Workqueue: events work_for_cpu_fn [ 7.978275] RIP: 0010:blk_mq_pci_map_queues+0xca/0xd0 [ 7.978278] Code: 48 89 de 89 c7 e8 f6 0f 4f 00 3b 05 c4 b7 8e 01 72 e1 5b 31 c0 5d 41 5c 41 5d 41 5e 41 5f e9 7d df 73 00 31 c0 e9 76 df 73 00 <0f> 0b eb bc 90 90 0f 1f 44 00 00 41 57 49 89 ff 41 56 41 55 41 54 [ 7.978280] RSP: 0018:ffffa95fc3707d50 EFLAGS: 00010216 [ 7.978283] RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 0000000000000010 [ 7.978284] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffff9190c32d4310 [ 7.978286] RBP: 0000000000000000 R08: ffffa95fc3707d38 R09: ffff91929b81ac00 [ 7.978287] R10: 0000000000000001 R11: ffffa95fc3707ac0 R12: 0000000000000000 [ 7.978288] R13: ffff9190c32d4000 R14: 00000000ffffffff R15: ffff9190c4c950a8 [ 7.978290] FS: 0000000000000000(0000) GS:ffff9193efc00000(0000) knlGS:0000000000000000 [ 7.978292] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 8.172814] CR2: 000055d11166c000 CR3: 00000002dae10002 CR4: 00000000007706f0 [ 8.172816] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 8.172817] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 8.172818] PKRU: 55555554 [ 8.172819] Call Trace: [ 8.172823] blk_mq_alloc_tag_set+0x12e/0x310 [ 8.264339] scsi_add_host_with_dma.cold.9+0x30/0x245 [ 8.279302] pqi_ctrl_init+0xacf/0xc8e [smartpqi] [ 8.294085] ? pqi_pci_probe+0x480/0x4c8 [smartpqi] [ 8.309015] pqi_pci_probe+0x480/0x4c8 [smartpqi] [ 8.323286] local_pci_probe+0x42/0x80 [ 8.337855] work_for_cpu_fn+0x16/0x20 [ 8.351193] process_one_work+0x1a7/0x360 [ 8.364462] ? create_worker+0x1a0/0x1a0 [ 8.379252] worker_thread+0x1ce/0x390 [ 8.392623] ? create_worker+0x1a0/0x1a0 [ 8.406295] kthread+0x10a/0x120 [ 8.418428] ? set_kthread_struct+0x50/0x50 [ 8.431532] ret_from_fork+0x1f/0x40 [ 8.444137] ---[ end trace 1bf0173d39354506 ]---
CVE-2024-26741 In the Linux kernel, the following vulnerability has been resolved: dccp/tcp: Unhash sk from ehash for tb2 alloc failure after check_estalblished(). syzkaller reported a warning [0] in inet_csk_destroy_sock() with no repro. WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); However, the syzkaller's log hinted that connect() failed just before the warning due to FAULT_INJECTION. [1] When connect() is called for an unbound socket, we search for an available ephemeral port. If a bhash bucket exists for the port, we call __inet_check_established() or __inet6_check_established() to check if the bucket is reusable. If reusable, we add the socket into ehash and set inet_sk(sk)->inet_num. Later, we look up the corresponding bhash2 bucket and try to allocate it if it does not exist. Although it rarely occurs in real use, if the allocation fails, we must revert the changes by check_established(). Otherwise, an unconnected socket could illegally occupy an ehash entry. Note that we do not put tw back into ehash because sk might have already responded to a packet for tw and it would be better to free tw earlier under such memory presure. [0]: WARNING: CPU: 0 PID: 350830 at net/ipv4/inet_connection_sock.c:1193 inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193) Modules linked in: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193) Code: 41 5c 41 5d 41 5e e9 2d 4a 3d fd e8 28 4a 3d fd 48 89 ef e8 f0 cd 7d ff 5b 5d 41 5c 41 5d 41 5e e9 13 4a 3d fd e8 0e 4a 3d fd <0f> 0b e9 61 fe ff ff e8 02 4a 3d fd 4c 89 e7 be 03 00 00 00 e8 05 RSP: 0018:ffffc9000b21fd38 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000009e78 RCX: ffffffff840bae40 RDX: ffff88806e46c600 RSI: ffffffff840bb012 RDI: ffff88811755cca8 RBP: ffff88811755c880 R08: 0000000000000003 R09: 0000000000000000 R10: 0000000000009e78 R11: 0000000000000000 R12: ffff88811755c8e0 R13: ffff88811755c892 R14: ffff88811755c918 R15: 0000000000000000 FS: 00007f03e5243800(0000) GS:ffff88811ae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b32f21000 CR3: 0000000112ffe001 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> ? inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193) dccp_close (net/dccp/proto.c:1078) inet_release (net/ipv4/af_inet.c:434) __sock_release (net/socket.c:660) sock_close (net/socket.c:1423) __fput (fs/file_table.c:377) __fput_sync (fs/file_table.c:462) __x64_sys_close (fs/open.c:1557 fs/open.c:1539 fs/open.c:1539) do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129) RIP: 0033:0x7f03e53852bb Code: 03 00 00 00 0f 05 48 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 43 c9 f5 ff 8b 7c 24 0c 41 89 c0 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 89 44 24 0c e8 a1 c9 f5 ff 8b 44 RSP: 002b:00000000005dfba0 EFLAGS: 00000293 ORIG_RAX: 0000000000000003 RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f03e53852bb RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000167c R10: 0000000008a79680 R11: 0000000000000293 R12: 00007f03e4e43000 R13: 00007f03e4e43170 R14: 00007f03e4e43178 R15: 00007f03e4e43170 </TASK> [1]: FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 0 CPU: 0 PID: 350833 Comm: syz-executor.1 Not tainted 6.7.0-12272-g2121c43f88f5 #9 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1)) should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153) should_failslab (mm/slub.c:3748) kmem_cache_alloc (mm/slub.c:3763 mm/slub.c:3842 mm/slub.c:3867) inet_bind2_bucket_create ---truncated---
CVE-2024-26740 In the Linux kernel, the following vulnerability has been resolved: net/sched: act_mirred: use the backlog for mirred ingress The test Davide added in commit ca22da2fbd69 ("act_mirred: use the backlog for nested calls to mirred ingress") hangs our testing VMs every 10 or so runs, with the familiar tcp_v4_rcv -> tcp_v4_rcv deadlock reported by lockdep. The problem as previously described by Davide (see Link) is that if we reverse flow of traffic with the redirect (egress -> ingress) we may reach the same socket which generated the packet. And we may still be holding its socket lock. The common solution to such deadlocks is to put the packet in the Rx backlog, rather than run the Rx path inline. Do that for all egress -> ingress reversals, not just once we started to nest mirred calls. In the past there was a concern that the backlog indirection will lead to loss of error reporting / less accurate stats. But the current workaround does not seem to address the issue.
CVE-2024-26739 In the Linux kernel, the following vulnerability has been resolved: net/sched: act_mirred: don't override retval if we already lost the skb If we're redirecting the skb, and haven't called tcf_mirred_forward(), yet, we need to tell the core to drop the skb by setting the retcode to SHOT. If we have called tcf_mirred_forward(), however, the skb is out of our hands and returning SHOT will lead to UaF. Move the retval override to the error path which actually need it.
CVE-2024-26738 In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries/iommu: DLPAR add doesn't completely initialize pci_controller When a PCI device is dynamically added, the kernel oopses with a NULL pointer dereference: BUG: Kernel NULL pointer dereference on read at 0x00000030 Faulting instruction address: 0xc0000000006bbe5c Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: rpadlpar_io rpaphp rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs xsk_diag bonding nft_compat nf_tables nfnetlink rfkill binfmt_misc dm_multipath rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_core_mod ib_umad ib_iser libiscsi scsi_transport_iscsi ib_ipoib rdma_cm iw_cm ib_cm mlx5_ib ib_uverbs ib_core pseries_rng drm drm_panel_orientation_quirks xfs libcrc32c mlx5_core mlxfw sd_mod t10_pi sg tls ibmvscsi ibmveth scsi_transport_srp vmx_crypto pseries_wdt psample dm_mirror dm_region_hash dm_log dm_mod fuse CPU: 17 PID: 2685 Comm: drmgr Not tainted 6.7.0-203405+ #66 Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_008) hv:phyp pSeries NIP: c0000000006bbe5c LR: c000000000a13e68 CTR: c0000000000579f8 REGS: c00000009924f240 TRAP: 0300 Not tainted (6.7.0-203405+) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24002220 XER: 20040006 CFAR: c000000000a13e64 DAR: 0000000000000030 DSISR: 40000000 IRQMASK: 0 ... NIP sysfs_add_link_to_group+0x34/0x94 LR iommu_device_link+0x5c/0x118 Call Trace: iommu_init_device+0x26c/0x318 (unreliable) iommu_device_link+0x5c/0x118 iommu_init_device+0xa8/0x318 iommu_probe_device+0xc0/0x134 iommu_bus_notifier+0x44/0x104 notifier_call_chain+0xb8/0x19c blocking_notifier_call_chain+0x64/0x98 bus_notify+0x50/0x7c device_add+0x640/0x918 pci_device_add+0x23c/0x298 of_create_pci_dev+0x400/0x884 of_scan_pci_dev+0x124/0x1b0 __of_scan_bus+0x78/0x18c pcibios_scan_phb+0x2a4/0x3b0 init_phb_dynamic+0xb8/0x110 dlpar_add_slot+0x170/0x3b8 [rpadlpar_io] add_slot_store.part.0+0xb4/0x130 [rpadlpar_io] kobj_attr_store+0x2c/0x48 sysfs_kf_write+0x64/0x78 kernfs_fop_write_iter+0x1b0/0x290 vfs_write+0x350/0x4a0 ksys_write+0x84/0x140 system_call_exception+0x124/0x330 system_call_vectored_common+0x15c/0x2ec Commit a940904443e4 ("powerpc/iommu: Add iommu_ops to report capabilities and allow blocking domains") broke DLPAR add of PCI devices. The above added iommu_device structure to pci_controller. During system boot, PCI devices are discovered and this newly added iommu_device structure is initialized by a call to iommu_device_register(). During DLPAR add of a PCI device, a new pci_controller structure is allocated but there are no calls made to iommu_device_register() interface. Fix is to register the iommu device during DLPAR add as well.
CVE-2024-26737 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix racing between bpf_timer_cancel_and_free and bpf_timer_cancel The following race is possible between bpf_timer_cancel_and_free and bpf_timer_cancel. It will lead a UAF on the timer->timer. bpf_timer_cancel(); spin_lock(); t = timer->time; spin_unlock(); bpf_timer_cancel_and_free(); spin_lock(); t = timer->timer; timer->timer = NULL; spin_unlock(); hrtimer_cancel(&t->timer); kfree(t); /* UAF on t */ hrtimer_cancel(&t->timer); In bpf_timer_cancel_and_free, this patch frees the timer->timer after a rcu grace period. This requires a rcu_head addition to the "struct bpf_hrtimer". Another kfree(t) happens in bpf_timer_init, this does not need a kfree_rcu because it is still under the spin_lock and timer->timer has not been visible by others yet. In bpf_timer_cancel, rcu_read_lock() is added because this helper can be used in a non rcu critical section context (e.g. from a sleepable bpf prog). Other timer->timer usages in helpers.c have been audited, bpf_timer_cancel() is the only place where timer->timer is used outside of the spin_lock. Another solution considered is to mark a t->flag in bpf_timer_cancel and clear it after hrtimer_cancel() is done. In bpf_timer_cancel_and_free, it busy waits for the flag to be cleared before kfree(t). This patch goes with a straight forward solution and frees timer->timer after a rcu grace period.
CVE-2024-26736 In the Linux kernel, the following vulnerability has been resolved: afs: Increase buffer size in afs_update_volume_status() The max length of volume->vid value is 20 characters. So increase idbuf[] size up to 24 to avoid overflow. Found by Linux Verification Center (linuxtesting.org) with SVACE. [DH: Actually, it's 20 + NUL, so increase it to 24 and use snprintf()]
CVE-2024-26735 In the Linux kernel, the following vulnerability has been resolved: ipv6: sr: fix possible use-after-free and null-ptr-deref The pernet operations structure for the subsystem must be registered before registering the generic netlink family.
CVE-2024-26734 In the Linux kernel, the following vulnerability has been resolved: devlink: fix possible use-after-free and memory leaks in devlink_init() The pernet operations structure for the subsystem must be registered before registering the generic netlink family. Make an unregister in case of unsuccessful registration.
CVE-2024-26733 In the Linux kernel, the following vulnerability has been resolved: arp: Prevent overflow in arp_req_get(). syzkaller reported an overflown write in arp_req_get(). [0] When ioctl(SIOCGARP) is issued, arp_req_get() looks up an neighbour entry and copies neigh->ha to struct arpreq.arp_ha.sa_data. The arp_ha here is struct sockaddr, not struct sockaddr_storage, so the sa_data buffer is just 14 bytes. In the splat below, 2 bytes are overflown to the next int field, arp_flags. We initialise the field just after the memcpy(), so it's not a problem. However, when dev->addr_len is greater than 22 (e.g. MAX_ADDR_LEN), arp_netmask is overwritten, which could be set as htonl(0xFFFFFFFFUL) in arp_ioctl() before calling arp_req_get(). To avoid the overflow, let's limit the max length of memcpy(). Note that commit b5f0de6df6dc ("net: dev: Convert sa_data to flexible array in struct sockaddr") just silenced syzkaller. [0]: memcpy: detected field-spanning write (size 16) of single field "r->arp_ha.sa_data" at net/ipv4/arp.c:1128 (size 14) WARNING: CPU: 0 PID: 144638 at net/ipv4/arp.c:1128 arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128 Modules linked in: CPU: 0 PID: 144638 Comm: syz-executor.4 Not tainted 6.1.74 #31 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014 RIP: 0010:arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128 Code: fd ff ff e8 41 42 de fb b9 0e 00 00 00 4c 89 fe 48 c7 c2 20 6d ab 87 48 c7 c7 80 6d ab 87 c6 05 25 af 72 04 01 e8 5f 8d ad fb <0f> 0b e9 6c fd ff ff e8 13 42 de fb be 03 00 00 00 4c 89 e7 e8 a6 RSP: 0018:ffffc900050b7998 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff88803a815000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8641a44a RDI: 0000000000000001 RBP: ffffc900050b7a98 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 203a7970636d656d R12: ffff888039c54000 R13: 1ffff92000a16f37 R14: ffff88803a815084 R15: 0000000000000010 FS: 00007f172bf306c0(0000) GS:ffff88805aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f172b3569f0 CR3: 0000000057f12005 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> arp_ioctl+0x33f/0x4b0 net/ipv4/arp.c:1261 inet_ioctl+0x314/0x3a0 net/ipv4/af_inet.c:981 sock_do_ioctl+0xdf/0x260 net/socket.c:1204 sock_ioctl+0x3ef/0x650 net/socket.c:1321 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x18e/0x220 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x37/0x90 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x64/0xce RIP: 0033:0x7f172b262b8d Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f172bf300b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f172b3abf80 RCX: 00007f172b262b8d RDX: 0000000020000000 RSI: 0000000000008954 RDI: 0000000000000003 RBP: 00007f172b2d3493 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007f172b3abf80 R15: 00007f172bf10000 </TASK>
CVE-2024-26732 In the Linux kernel, the following vulnerability has been resolved: net: implement lockless setsockopt(SO_PEEK_OFF) syzbot reported a lockdep violation [1] involving af_unix support of SO_PEEK_OFF. Since SO_PEEK_OFF is inherently not thread safe (it uses a per-socket sk_peek_off field), there is really no point to enforce a pointless thread safety in the kernel. After this patch : - setsockopt(SO_PEEK_OFF) no longer acquires the socket lock. - skb_consume_udp() no longer has to acquire the socket lock. - af_unix no longer needs a special version of sk_set_peek_off(), because it does not lock u->iolock anymore. As a followup, we could replace prot->set_peek_off to be a boolean and avoid an indirect call, since we always use sk_set_peek_off(). [1] WARNING: possible circular locking dependency detected 6.8.0-rc4-syzkaller-00267-g0f1dd5e91e2b #0 Not tainted syz-executor.2/30025 is trying to acquire lock: ffff8880765e7d80 (&u->iolock){+.+.}-{3:3}, at: unix_set_peek_off+0x26/0xa0 net/unix/af_unix.c:789 but task is already holding lock: ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1691 [inline] ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sockopt_lock_sock net/core/sock.c:1060 [inline] ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sk_setsockopt+0xe52/0x3360 net/core/sock.c:1193 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_UNIX){+.+.}-{0:0}: lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754 lock_sock_nested+0x48/0x100 net/core/sock.c:3524 lock_sock include/net/sock.h:1691 [inline] __unix_dgram_recvmsg+0x1275/0x12c0 net/unix/af_unix.c:2415 sock_recvmsg_nosec+0x18e/0x1d0 net/socket.c:1046 ____sys_recvmsg+0x3c0/0x470 net/socket.c:2801 ___sys_recvmsg net/socket.c:2845 [inline] do_recvmmsg+0x474/0xae0 net/socket.c:2939 __sys_recvmmsg net/socket.c:3018 [inline] __do_sys_recvmmsg net/socket.c:3041 [inline] __se_sys_recvmmsg net/socket.c:3034 [inline] __x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 -> #0 (&u->iolock){+.+.}-{3:3}: check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain+0x18ca/0x58e0 kernel/locking/lockdep.c:3869 __lock_acquire+0x1345/0x1fd0 kernel/locking/lockdep.c:5137 lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754 __mutex_lock_common kernel/locking/mutex.c:608 [inline] __mutex_lock+0x136/0xd70 kernel/locking/mutex.c:752 unix_set_peek_off+0x26/0xa0 net/unix/af_unix.c:789 sk_setsockopt+0x207e/0x3360 do_sock_setsockopt+0x2fb/0x720 net/socket.c:2307 __sys_setsockopt+0x1ad/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sk_lock-AF_UNIX); lock(&u->iolock); lock(sk_lock-AF_UNIX); lock(&u->iolock); *** DEADLOCK *** 1 lock held by syz-executor.2/30025: #0: ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1691 [inline] #0: ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sockopt_lock_sock net/core/sock.c:1060 [inline] #0: ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sk_setsockopt+0xe52/0x3360 net/core/sock.c:1193 stack backtrace: CPU: 0 PID: 30025 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00267-g0f1dd5e91e2b #0 Hardware name: Google Google C ---truncated---
CVE-2024-26731 In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix NULL pointer dereference in sk_psock_verdict_data_ready() syzbot reported the following NULL pointer dereference issue [1]: BUG: kernel NULL pointer dereference, address: 0000000000000000 [...] RIP: 0010:0x0 [...] Call Trace: <TASK> sk_psock_verdict_data_ready+0x232/0x340 net/core/skmsg.c:1230 unix_stream_sendmsg+0x9b4/0x1230 net/unix/af_unix.c:2293 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 If sk_psock_verdict_data_ready() and sk_psock_stop_verdict() are called concurrently, psock->saved_data_ready can be NULL, causing the above issue. This patch fixes this issue by calling the appropriate data ready function using the sk_psock_data_ready() helper and protecting it from concurrency with sk->sk_callback_lock.
CVE-2024-26730 In the Linux kernel, the following vulnerability has been resolved: hwmon: (nct6775) Fix access to temperature configuration registers The number of temperature configuration registers does not always match the total number of temperature registers. This can result in access errors reported if KASAN is enabled. BUG: KASAN: global-out-of-bounds in nct6775_probe+0x5654/0x6fe9 nct6775_core
CVE-2024-26729 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix potential null pointer dereference in dc_dmub_srv Fixes potential null pointer dereference warnings in the dc_dmub_srv_cmd_list_queue_execute() and dc_dmub_srv_is_hw_pwr_up() functions. In both functions, the 'dc_dmub_srv' variable was being dereferenced before it was checked for null. This could lead to a null pointer dereference if 'dc_dmub_srv' is null. The fix is to check if 'dc_dmub_srv' is null before dereferencing it. Thus moving the null checks for 'dc_dmub_srv' to the beginning of the functions to ensure that 'dc_dmub_srv' is not null when it is dereferenced. Found by smatch & thus fixing the below: drivers/gpu/drm/amd/amdgpu/../display/dc/dc_dmub_srv.c:133 dc_dmub_srv_cmd_list_queue_execute() warn: variable dereferenced before check 'dc_dmub_srv' (see line 128) drivers/gpu/drm/amd/amdgpu/../display/dc/dc_dmub_srv.c:1167 dc_dmub_srv_is_hw_pwr_up() warn: variable dereferenced before check 'dc_dmub_srv' (see line 1164)
CVE-2024-26728 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix null-pointer dereference on edid reading Use i2c adapter when there isn't aux_mode in dc_link to fix a null-pointer derefence that happens when running igt@kms_force_connector_basic in a system with DCN2.1 and HDMI connector detected as below: [ +0.178146] BUG: kernel NULL pointer dereference, address: 00000000000004c0 [ +0.000010] #PF: supervisor read access in kernel mode [ +0.000005] #PF: error_code(0x0000) - not-present page [ +0.000004] PGD 0 P4D 0 [ +0.000006] Oops: 0000 [#1] PREEMPT SMP NOPTI [ +0.000006] CPU: 15 PID: 2368 Comm: kms_force_conne Not tainted 6.5.0-asdn+ #152 [ +0.000005] Hardware name: HP HP ENVY x360 Convertible 13-ay1xxx/8929, BIOS F.01 07/14/2021 [ +0.000004] RIP: 0010:i2c_transfer+0xd/0x100 [ +0.000011] Code: ea fc ff ff 66 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 55 53 <48> 8b 47 10 48 89 fb 48 83 38 00 0f 84 b3 00 00 00 83 3d 2f 80 16 [ +0.000004] RSP: 0018:ffff9c4f89c0fad0 EFLAGS: 00010246 [ +0.000005] RAX: 0000000000000000 RBX: 0000000000000005 RCX: 0000000000000080 [ +0.000003] RDX: 0000000000000002 RSI: ffff9c4f89c0fb20 RDI: 00000000000004b0 [ +0.000003] RBP: ffff9c4f89c0fb80 R08: 0000000000000080 R09: ffff8d8e0b15b980 [ +0.000003] R10: 00000000000380e0 R11: 0000000000000000 R12: 0000000000000080 [ +0.000002] R13: 0000000000000002 R14: ffff9c4f89c0fb0e R15: ffff9c4f89c0fb0f [ +0.000004] FS: 00007f9ad2176c40(0000) GS:ffff8d90fe9c0000(0000) knlGS:0000000000000000 [ +0.000003] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000004] CR2: 00000000000004c0 CR3: 0000000121bc4000 CR4: 0000000000750ee0 [ +0.000003] PKRU: 55555554 [ +0.000003] Call Trace: [ +0.000006] <TASK> [ +0.000006] ? __die+0x23/0x70 [ +0.000011] ? page_fault_oops+0x17d/0x4c0 [ +0.000008] ? preempt_count_add+0x6e/0xa0 [ +0.000008] ? srso_alias_return_thunk+0x5/0x7f [ +0.000011] ? exc_page_fault+0x7f/0x180 [ +0.000009] ? asm_exc_page_fault+0x26/0x30 [ +0.000013] ? i2c_transfer+0xd/0x100 [ +0.000010] drm_do_probe_ddc_edid+0xc2/0x140 [drm] [ +0.000067] ? srso_alias_return_thunk+0x5/0x7f [ +0.000006] ? _drm_do_get_edid+0x97/0x3c0 [drm] [ +0.000043] ? __pfx_drm_do_probe_ddc_edid+0x10/0x10 [drm] [ +0.000042] edid_block_read+0x3b/0xd0 [drm] [ +0.000043] _drm_do_get_edid+0xb6/0x3c0 [drm] [ +0.000041] ? __pfx_drm_do_probe_ddc_edid+0x10/0x10 [drm] [ +0.000043] drm_edid_read_custom+0x37/0xd0 [drm] [ +0.000044] amdgpu_dm_connector_mode_valid+0x129/0x1d0 [amdgpu] [ +0.000153] drm_connector_mode_valid+0x3b/0x60 [drm_kms_helper] [ +0.000000] __drm_helper_update_and_validate+0xfe/0x3c0 [drm_kms_helper] [ +0.000000] ? amdgpu_dm_connector_get_modes+0xb6/0x520 [amdgpu] [ +0.000000] ? srso_alias_return_thunk+0x5/0x7f [ +0.000000] drm_helper_probe_single_connector_modes+0x2ab/0x540 [drm_kms_helper] [ +0.000000] status_store+0xb2/0x1f0 [drm] [ +0.000000] kernfs_fop_write_iter+0x136/0x1d0 [ +0.000000] vfs_write+0x24d/0x440 [ +0.000000] ksys_write+0x6f/0xf0 [ +0.000000] do_syscall_64+0x60/0xc0 [ +0.000000] ? srso_alias_return_thunk+0x5/0x7f [ +0.000000] ? syscall_exit_to_user_mode+0x2b/0x40 [ +0.000000] ? srso_alias_return_thunk+0x5/0x7f [ +0.000000] ? do_syscall_64+0x6c/0xc0 [ +0.000000] ? do_syscall_64+0x6c/0xc0 [ +0.000000] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ +0.000000] RIP: 0033:0x7f9ad46b4b00 [ +0.000000] Code: 40 00 48 8b 15 19 b3 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d e1 3a 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89 [ +0.000000] RSP: 002b:00007ffcbd3bd6d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 [ +0.000000] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f9ad46b4b00 [ +0.000000] RDX: 0000000000000002 RSI: 00007f9ad48a7417 RDI: 0000000000000009 [ +0.000000] RBP: 0000000000000002 R08 ---truncated---
CVE-2024-26727 In the Linux kernel, the following vulnerability has been resolved: btrfs: do not ASSERT() if the newly created subvolume already got read [BUG] There is a syzbot crash, triggered by the ASSERT() during subvolume creation: assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319 ------------[ cut here ]------------ kernel BUG at fs/btrfs/disk-io.c:1319! invalid opcode: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60 <TASK> btrfs_get_new_fs_root+0xd3/0xf0 create_subvol+0xd02/0x1650 btrfs_mksubvol+0xe95/0x12b0 __btrfs_ioctl_snap_create+0x2f9/0x4f0 btrfs_ioctl_snap_create+0x16b/0x200 btrfs_ioctl+0x35f0/0x5cf0 __x64_sys_ioctl+0x19d/0x210 do_syscall_64+0x3f/0xe0 entry_SYSCALL_64_after_hwframe+0x63/0x6b ---[ end trace 0000000000000000 ]--- [CAUSE] During create_subvol(), after inserting root item for the newly created subvolume, we would trigger btrfs_get_new_fs_root() to get the btrfs_root of that subvolume. The idea here is, we have preallocated an anonymous device number for the subvolume, thus we can assign it to the new subvolume. But there is really nothing preventing things like backref walk to read the new subvolume. If that happens before we call btrfs_get_new_fs_root(), the subvolume would be read out, with a new anonymous device number assigned already. In that case, we would trigger ASSERT(), as we really expect no one to read out that subvolume (which is not yet accessible from the fs). But things like backref walk is still possible to trigger the read on the subvolume. Thus our assumption on the ASSERT() is not correct in the first place. [FIX] Fix it by removing the ASSERT(), and just free the @anon_dev, reset it to 0, and continue. If the subvolume tree is read out by something else, it should have already get a new anon_dev assigned thus we only need to free the preallocated one.
CVE-2024-26726 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't drop extent_map for free space inode on write error While running the CI for an unrelated change I hit the following panic with generic/648 on btrfs_holes_spacecache. assertion failed: block_start != EXTENT_MAP_HOLE, in fs/btrfs/extent_io.c:1385 ------------[ cut here ]------------ kernel BUG at fs/btrfs/extent_io.c:1385! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 2695096 Comm: fsstress Kdump: loaded Tainted: G W 6.8.0-rc2+ #1 RIP: 0010:__extent_writepage_io.constprop.0+0x4c1/0x5c0 Call Trace: <TASK> extent_write_cache_pages+0x2ac/0x8f0 extent_writepages+0x87/0x110 do_writepages+0xd5/0x1f0 filemap_fdatawrite_wbc+0x63/0x90 __filemap_fdatawrite_range+0x5c/0x80 btrfs_fdatawrite_range+0x1f/0x50 btrfs_write_out_cache+0x507/0x560 btrfs_write_dirty_block_groups+0x32a/0x420 commit_cowonly_roots+0x21b/0x290 btrfs_commit_transaction+0x813/0x1360 btrfs_sync_file+0x51a/0x640 __x64_sys_fdatasync+0x52/0x90 do_syscall_64+0x9c/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 This happens because we fail to write out the free space cache in one instance, come back around and attempt to write it again. However on the second pass through we go to call btrfs_get_extent() on the inode to get the extent mapping. Because this is a new block group, and with the free space inode we always search the commit root to avoid deadlocking with the tree, we find nothing and return a EXTENT_MAP_HOLE for the requested range. This happens because the first time we try to write the space cache out we hit an error, and on an error we drop the extent mapping. This is normal for normal files, but the free space cache inode is special. We always expect the extent map to be correct. Thus the second time through we end up with a bogus extent map. Since we're deprecating this feature, the most straightforward way to fix this is to simply skip dropping the extent map range for this failed range. I shortened the test by using error injection to stress the area to make it easier to reproduce. With this patch in place we no longer panic with my error injection test.
CVE-2024-26725 In the Linux kernel, the following vulnerability has been resolved: dpll: fix possible deadlock during netlink dump operation Recently, I've been hitting following deadlock warning during dpll pin dump: [52804.637962] ====================================================== [52804.638536] WARNING: possible circular locking dependency detected [52804.639111] 6.8.0-rc2jiri+ #1 Not tainted [52804.639529] ------------------------------------------------------ [52804.640104] python3/2984 is trying to acquire lock: [52804.640581] ffff88810e642678 (nlk_cb_mutex-GENERIC){+.+.}-{3:3}, at: netlink_dump+0xb3/0x780 [52804.641417] but task is already holding lock: [52804.642010] ffffffff83bde4c8 (dpll_lock){+.+.}-{3:3}, at: dpll_lock_dumpit+0x13/0x20 [52804.642747] which lock already depends on the new lock. [52804.643551] the existing dependency chain (in reverse order) is: [52804.644259] -> #1 (dpll_lock){+.+.}-{3:3}: [52804.644836] lock_acquire+0x174/0x3e0 [52804.645271] __mutex_lock+0x119/0x1150 [52804.645723] dpll_lock_dumpit+0x13/0x20 [52804.646169] genl_start+0x266/0x320 [52804.646578] __netlink_dump_start+0x321/0x450 [52804.647056] genl_family_rcv_msg_dumpit+0x155/0x1e0 [52804.647575] genl_rcv_msg+0x1ed/0x3b0 [52804.648001] netlink_rcv_skb+0xdc/0x210 [52804.648440] genl_rcv+0x24/0x40 [52804.648831] netlink_unicast+0x2f1/0x490 [52804.649290] netlink_sendmsg+0x36d/0x660 [52804.649742] __sock_sendmsg+0x73/0xc0 [52804.650165] __sys_sendto+0x184/0x210 [52804.650597] __x64_sys_sendto+0x72/0x80 [52804.651045] do_syscall_64+0x6f/0x140 [52804.651474] entry_SYSCALL_64_after_hwframe+0x46/0x4e [52804.652001] -> #0 (nlk_cb_mutex-GENERIC){+.+.}-{3:3}: [52804.652650] check_prev_add+0x1ae/0x1280 [52804.653107] __lock_acquire+0x1ed3/0x29a0 [52804.653559] lock_acquire+0x174/0x3e0 [52804.653984] __mutex_lock+0x119/0x1150 [52804.654423] netlink_dump+0xb3/0x780 [52804.654845] __netlink_dump_start+0x389/0x450 [52804.655321] genl_family_rcv_msg_dumpit+0x155/0x1e0 [52804.655842] genl_rcv_msg+0x1ed/0x3b0 [52804.656272] netlink_rcv_skb+0xdc/0x210 [52804.656721] genl_rcv+0x24/0x40 [52804.657119] netlink_unicast+0x2f1/0x490 [52804.657570] netlink_sendmsg+0x36d/0x660 [52804.658022] __sock_sendmsg+0x73/0xc0 [52804.658450] __sys_sendto+0x184/0x210 [52804.658877] __x64_sys_sendto+0x72/0x80 [52804.659322] do_syscall_64+0x6f/0x140 [52804.659752] entry_SYSCALL_64_after_hwframe+0x46/0x4e [52804.660281] other info that might help us debug this: [52804.661077] Possible unsafe locking scenario: [52804.661671] CPU0 CPU1 [52804.662129] ---- ---- [52804.662577] lock(dpll_lock); [52804.662924] lock(nlk_cb_mutex-GENERIC); [52804.663538] lock(dpll_lock); [52804.664073] lock(nlk_cb_mutex-GENERIC); [52804.664490] The issue as follows: __netlink_dump_start() calls control->start(cb) with nlk->cb_mutex held. In control->start(cb) the dpll_lock is taken. Then nlk->cb_mutex is released and taken again in netlink_dump(), while dpll_lock still being held. That leads to ABBA deadlock when another CPU races with the same operation. Fix this by moving dpll_lock taking into dumpit() callback which ensures correct lock taking order.
CVE-2024-26724 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: DPLL, Fix possible use after free after delayed work timer triggers I managed to hit following use after free warning recently: [ 2169.711665] ================================================================== [ 2169.714009] BUG: KASAN: slab-use-after-free in __run_timers.part.0+0x179/0x4c0 [ 2169.716293] Write of size 8 at addr ffff88812b326a70 by task swapper/4/0 [ 2169.719022] CPU: 4 PID: 0 Comm: swapper/4 Not tainted 6.8.0-rc2jiri+ #2 [ 2169.720974] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 2169.722457] Call Trace: [ 2169.722756] <IRQ> [ 2169.723024] dump_stack_lvl+0x58/0xb0 [ 2169.723417] print_report+0xc5/0x630 [ 2169.723807] ? __virt_addr_valid+0x126/0x2b0 [ 2169.724268] kasan_report+0xbe/0xf0 [ 2169.724667] ? __run_timers.part.0+0x179/0x4c0 [ 2169.725116] ? __run_timers.part.0+0x179/0x4c0 [ 2169.725570] __run_timers.part.0+0x179/0x4c0 [ 2169.726003] ? call_timer_fn+0x320/0x320 [ 2169.726404] ? lock_downgrade+0x3a0/0x3a0 [ 2169.726820] ? kvm_clock_get_cycles+0x14/0x20 [ 2169.727257] ? ktime_get+0x92/0x150 [ 2169.727630] ? lapic_next_deadline+0x35/0x60 [ 2169.728069] run_timer_softirq+0x40/0x80 [ 2169.728475] __do_softirq+0x1a1/0x509 [ 2169.728866] irq_exit_rcu+0x95/0xc0 [ 2169.729241] sysvec_apic_timer_interrupt+0x6b/0x80 [ 2169.729718] </IRQ> [ 2169.729993] <TASK> [ 2169.730259] asm_sysvec_apic_timer_interrupt+0x16/0x20 [ 2169.730755] RIP: 0010:default_idle+0x13/0x20 [ 2169.731190] Code: c0 08 00 00 00 4d 29 c8 4c 01 c7 4c 29 c2 e9 72 ff ff ff cc cc cc cc 8b 05 9a 7f 1f 02 85 c0 7e 07 0f 00 2d cf 69 43 00 fb f4 <fa> c3 66 66 2e 0f 1f 84 00 00 00 00 00 65 48 8b 04 25 c0 93 04 00 [ 2169.732759] RSP: 0018:ffff888100dbfe10 EFLAGS: 00000242 [ 2169.733264] RAX: 0000000000000001 RBX: ffff888100d9c200 RCX: ffffffff8241bd62 [ 2169.733925] RDX: ffffed109a848b15 RSI: 0000000000000004 RDI: ffffffff8127ac55 [ 2169.734566] RBP: 0000000000000004 R08: 0000000000000000 R09: ffffed109a848b14 [ 2169.735200] R10: ffff8884d42458a3 R11: 000000000000ba7e R12: ffffffff83d7d3a0 [ 2169.735835] R13: 1ffff110201b7fc6 R14: 0000000000000000 R15: ffff888100d9c200 [ 2169.736478] ? ct_kernel_exit.constprop.0+0xa2/0xc0 [ 2169.736954] ? do_idle+0x285/0x290 [ 2169.737323] default_idle_call+0x63/0x90 [ 2169.737730] do_idle+0x285/0x290 [ 2169.738089] ? arch_cpu_idle_exit+0x30/0x30 [ 2169.738511] ? mark_held_locks+0x1a/0x80 [ 2169.738917] ? lockdep_hardirqs_on_prepare+0x12e/0x200 [ 2169.739417] cpu_startup_entry+0x30/0x40 [ 2169.739825] start_secondary+0x19a/0x1c0 [ 2169.740229] ? set_cpu_sibling_map+0xbd0/0xbd0 [ 2169.740673] secondary_startup_64_no_verify+0x15d/0x16b [ 2169.741179] </TASK> [ 2169.741686] Allocated by task 1098: [ 2169.742058] kasan_save_stack+0x1c/0x40 [ 2169.742456] kasan_save_track+0x10/0x30 [ 2169.742852] __kasan_kmalloc+0x83/0x90 [ 2169.743246] mlx5_dpll_probe+0xf5/0x3c0 [mlx5_dpll] [ 2169.743730] auxiliary_bus_probe+0x62/0xb0 [ 2169.744148] really_probe+0x127/0x590 [ 2169.744534] __driver_probe_device+0xd2/0x200 [ 2169.744973] device_driver_attach+0x6b/0xf0 [ 2169.745402] bind_store+0x90/0xe0 [ 2169.745761] kernfs_fop_write_iter+0x1df/0x2a0 [ 2169.746210] vfs_write+0x41f/0x790 [ 2169.746579] ksys_write+0xc7/0x160 [ 2169.746947] do_syscall_64+0x6f/0x140 [ 2169.747333] entry_SYSCALL_64_after_hwframe+0x46/0x4e [ 2169.748049] Freed by task 1220: [ 2169.748393] kasan_save_stack+0x1c/0x40 [ 2169.748789] kasan_save_track+0x10/0x30 [ 2169.749188] kasan_save_free_info+0x3b/0x50 [ 2169.749621] poison_slab_object+0x106/0x180 [ 2169.750044] __kasan_slab_free+0x14/0x50 [ 2169.750451] kfree+0x118/0x330 [ 2169.750792] mlx5_dpll_remove+0xf5/0x110 [mlx5_dpll] [ 2169.751271] auxiliary_bus_remove+0x2e/0x40 [ 2169.751694] device_release_driver_internal+0x24b/0x2e0 [ 2169.752191] unbind_store+0xa6/0xb0 [ 2169.752563] kernfs_fo ---truncated---
CVE-2024-26723 In the Linux kernel, the following vulnerability has been resolved: lan966x: Fix crash when adding interface under a lag There is a crash when adding one of the lan966x interfaces under a lag interface. The issue can be reproduced like this: ip link add name bond0 type bond miimon 100 mode balance-xor ip link set dev eth0 master bond0 The reason is because when adding a interface under the lag it would go through all the ports and try to figure out which other ports are under that lag interface. And the issue is that lan966x can have ports that are NULL pointer as they are not probed. So then iterating over these ports it would just crash as they are NULL pointers. The fix consists in actually checking for NULL pointers before accessing something from the ports. Like we do in other places.
CVE-2024-26722 In the Linux kernel, the following vulnerability has been resolved: ASoC: rt5645: Fix deadlock in rt5645_jack_detect_work() There is a path in rt5645_jack_detect_work(), where rt5645->jd_mutex is left locked forever. That may lead to deadlock when rt5645_jack_detect_work() is called for the second time. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-26721 In the Linux kernel, the following vulnerability has been resolved: drm/i915/dsc: Fix the macro that calculates DSCC_/DSCA_ PPS reg address Commit bd077259d0a9 ("drm/i915/vdsc: Add function to read any PPS register") defines a new macro to calculate the DSC PPS register addresses with PPS number as an input. This macro correctly calculates the addresses till PPS 11 since the addresses increment by 4. So in that case the following macro works correctly to give correct register address: _MMIO(_DSCA_PPS_0 + (pps) * 4) However after PPS 11, the register address for PPS 12 increments by 12 because of RC Buffer memory allocation in between. Because of this discontinuity in the address space, the macro calculates wrong addresses for PPS 12 - 16 resulting into incorrect DSC PPS parameter value read/writes causing DSC corruption. This fixes it by correcting this macro to add the offset of 12 for PPS >=12. v3: Add correct paranthesis for pps argument (Jani Nikula) (cherry picked from commit 6074be620c31dc2ae11af96a1a5ea95580976fb5)
CVE-2024-26720 In the Linux kernel, the following vulnerability has been resolved: mm/writeback: fix possible divide-by-zero in wb_dirty_limits(), again (struct dirty_throttle_control *)->thresh is an unsigned long, but is passed as the u32 divisor argument to div_u64(). On architectures where unsigned long is 64 bytes, the argument will be implicitly truncated. Use div64_u64() instead of div_u64() so that the value used in the "is this a safe division" check is the same as the divisor. Also, remove redundant cast of the numerator to u64, as that should happen implicitly. This would be difficult to exploit in memcg domain, given the ratio-based arithmetic domain_drity_limits() uses, but is much easier in global writeback domain with a BDI_CAP_STRICTLIMIT-backing device, using e.g. vm.dirty_bytes=(1<<32)*PAGE_SIZE so that dtc->thresh == (1<<32)
CVE-2024-26719 In the Linux kernel, the following vulnerability has been resolved: nouveau: offload fence uevents work to workqueue This should break the deadlock between the fctx lock and the irq lock. This offloads the processing off the work from the irq into a workqueue.
CVE-2024-26718 In the Linux kernel, the following vulnerability has been resolved: dm-crypt, dm-verity: disable tasklets Tasklets have an inherent problem with memory corruption. The function tasklet_action_common calls tasklet_trylock, then it calls the tasklet callback and then it calls tasklet_unlock. If the tasklet callback frees the structure that contains the tasklet or if it calls some code that may free it, tasklet_unlock will write into free memory. The commits 8e14f610159d and d9a02e016aaf try to fix it for dm-crypt, but it is not a sufficient fix and the data corruption can still happen [1]. There is no fix for dm-verity and dm-verity will write into free memory with every tasklet-processed bio. There will be atomic workqueues implemented in the kernel 6.9 [2]. They will have better interface and they will not suffer from the memory corruption problem. But we need something that stops the memory corruption now and that can be backported to the stable kernels. So, I'm proposing this commit that disables tasklets in both dm-crypt and dm-verity. This commit doesn't remove the tasklet support, because the tasklet code will be reused when atomic workqueues will be implemented. [1] https://lore.kernel.org/all/d390d7ee-f142-44d3-822a-87949e14608b@suse.de/T/ [2] https://lore.kernel.org/lkml/20240130091300.2968534-1-tj@kernel.org/
CVE-2024-26717 In the Linux kernel, the following vulnerability has been resolved: HID: i2c-hid-of: fix NULL-deref on failed power up A while back the I2C HID implementation was split in an ACPI and OF part, but the new OF driver never initialises the client pointer which is dereferenced on power-up failures.
CVE-2024-26716 In the Linux kernel, the following vulnerability has been resolved: usb: core: Prevent null pointer dereference in update_port_device_state Currently, the function update_port_device_state gets the usb_hub from udev->parent by calling usb_hub_to_struct_hub. However, in case the actconfig or the maxchild is 0, the usb_hub would be NULL and upon further accessing to get port_dev would result in null pointer dereference. Fix this by introducing an if check after the usb_hub is populated.
CVE-2024-26715 In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: gadget: Fix NULL pointer dereference in dwc3_gadget_suspend In current scenario if Plug-out and Plug-In performed continuously there could be a chance while checking for dwc->gadget_driver in dwc3_gadget_suspend, a NULL pointer dereference may occur. Call Stack: CPU1: CPU2: gadget_unbind_driver dwc3_suspend_common dwc3_gadget_stop dwc3_gadget_suspend dwc3_disconnect_gadget CPU1 basically clears the variable and CPU2 checks the variable. Consider CPU1 is running and right before gadget_driver is cleared and in parallel CPU2 executes dwc3_gadget_suspend where it finds dwc->gadget_driver which is not NULL and resumes execution and then CPU1 completes execution. CPU2 executes dwc3_disconnect_gadget where it checks dwc->gadget_driver is already NULL because of which the NULL pointer deference occur.
CVE-2024-26714 In the Linux kernel, the following vulnerability has been resolved: interconnect: qcom: sc8180x: Mark CO0 BCM keepalive The CO0 BCM needs to be up at all times, otherwise some hardware (like the UFS controller) loses its connection to the rest of the SoC, resulting in a hang of the platform, accompanied by a spectacular logspam. Mark it as keepalive to prevent such cases.
CVE-2024-26713 In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries/iommu: Fix iommu initialisation during DLPAR add When a PCI device is dynamically added, the kernel oopses with a NULL pointer dereference: BUG: Kernel NULL pointer dereference on read at 0x00000030 Faulting instruction address: 0xc0000000006bbe5c Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: rpadlpar_io rpaphp rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs xsk_diag bonding nft_compat nf_tables nfnetlink rfkill binfmt_misc dm_multipath rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_core_mod ib_umad ib_iser libiscsi scsi_transport_iscsi ib_ipoib rdma_cm iw_cm ib_cm mlx5_ib ib_uverbs ib_core pseries_rng drm drm_panel_orientation_quirks xfs libcrc32c mlx5_core mlxfw sd_mod t10_pi sg tls ibmvscsi ibmveth scsi_transport_srp vmx_crypto pseries_wdt psample dm_mirror dm_region_hash dm_log dm_mod fuse CPU: 17 PID: 2685 Comm: drmgr Not tainted 6.7.0-203405+ #66 Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_008) hv:phyp pSeries NIP: c0000000006bbe5c LR: c000000000a13e68 CTR: c0000000000579f8 REGS: c00000009924f240 TRAP: 0300 Not tainted (6.7.0-203405+) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24002220 XER: 20040006 CFAR: c000000000a13e64 DAR: 0000000000000030 DSISR: 40000000 IRQMASK: 0 ... NIP sysfs_add_link_to_group+0x34/0x94 LR iommu_device_link+0x5c/0x118 Call Trace: iommu_init_device+0x26c/0x318 (unreliable) iommu_device_link+0x5c/0x118 iommu_init_device+0xa8/0x318 iommu_probe_device+0xc0/0x134 iommu_bus_notifier+0x44/0x104 notifier_call_chain+0xb8/0x19c blocking_notifier_call_chain+0x64/0x98 bus_notify+0x50/0x7c device_add+0x640/0x918 pci_device_add+0x23c/0x298 of_create_pci_dev+0x400/0x884 of_scan_pci_dev+0x124/0x1b0 __of_scan_bus+0x78/0x18c pcibios_scan_phb+0x2a4/0x3b0 init_phb_dynamic+0xb8/0x110 dlpar_add_slot+0x170/0x3b8 [rpadlpar_io] add_slot_store.part.0+0xb4/0x130 [rpadlpar_io] kobj_attr_store+0x2c/0x48 sysfs_kf_write+0x64/0x78 kernfs_fop_write_iter+0x1b0/0x290 vfs_write+0x350/0x4a0 ksys_write+0x84/0x140 system_call_exception+0x124/0x330 system_call_vectored_common+0x15c/0x2ec Commit a940904443e4 ("powerpc/iommu: Add iommu_ops to report capabilities and allow blocking domains") broke DLPAR add of PCI devices. The above added iommu_device structure to pci_controller. During system boot, PCI devices are discovered and this newly added iommu_device structure is initialized by a call to iommu_device_register(). During DLPAR add of a PCI device, a new pci_controller structure is allocated but there are no calls made to iommu_device_register() interface. Fix is to register the iommu device during DLPAR add as well. [mpe: Trim oops and tweak some change log wording]
CVE-2024-26712 In the Linux kernel, the following vulnerability has been resolved: powerpc/kasan: Fix addr error caused by page alignment In kasan_init_region, when k_start is not page aligned, at the begin of for loop, k_cur = k_start & PAGE_MASK is less than k_start, and then `va = block + k_cur - k_start` is less than block, the addr va is invalid, because the memory address space from va to block is not alloced by memblock_alloc, which will not be reserved by memblock_reserve later, it will be used by other places. As a result, memory overwriting occurs. for example: int __init __weak kasan_init_region(void *start, size_t size) { [...] /* if say block(dcd97000) k_start(feef7400) k_end(feeff3fe) */ block = memblock_alloc(k_end - k_start, PAGE_SIZE); [...] for (k_cur = k_start & PAGE_MASK; k_cur < k_end; k_cur += PAGE_SIZE) { /* at the begin of for loop * block(dcd97000) va(dcd96c00) k_cur(feef7000) k_start(feef7400) * va(dcd96c00) is less than block(dcd97000), va is invalid */ void *va = block + k_cur - k_start; [...] } [...] } Therefore, page alignment is performed on k_start before memblock_alloc() to ensure the validity of the VA address.
CVE-2024-26711 In the Linux kernel, the following vulnerability has been resolved: iio: adc: ad4130: zero-initialize clock init data The clk_init_data struct does not have all its members initialized, causing issues when trying to expose the internal clock on the CLK pin. Fix this by zero-initializing the clk_init_data struct.
CVE-2024-26710 In the Linux kernel, the following vulnerability has been resolved: powerpc/kasan: Limit KASAN thread size increase to 32KB KASAN is seen to increase stack usage, to the point that it was reported to lead to stack overflow on some 32-bit machines (see link). To avoid overflows the stack size was doubled for KASAN builds in commit 3e8635fb2e07 ("powerpc/kasan: Force thread size increase with KASAN"). However with a 32KB stack size to begin with, the doubling leads to a 64KB stack, which causes build errors: arch/powerpc/kernel/switch.S:249: Error: operand out of range (0x000000000000fe50 is not between 0xffffffffffff8000 and 0x0000000000007fff) Although the asm could be reworked, in practice a 32KB stack seems sufficient even for KASAN builds - the additional usage seems to be in the 2-3KB range for a 64-bit KASAN build. So only increase the stack for KASAN if the stack size is < 32KB.
CVE-2024-26709 In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: Fix the missing iommu_group_put() during platform domain attach The function spapr_tce_platform_iommu_attach_dev() is missing to call iommu_group_put() when the domain is already set. This refcount leak shows up with BUG_ON() during DLPAR remove operation as: KernelBug: Kernel bug in state 'None': kernel BUG at arch/powerpc/platforms/pseries/iommu.c:100! Oops: Exception in kernel mode, sig: 5 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=8192 NUMA pSeries <snip> Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_016) hv:phyp pSeries NIP: c0000000000ff4d4 LR: c0000000000ff4cc CTR: 0000000000000000 REGS: c0000013aed5f840 TRAP: 0700 Tainted: G I (6.8.0-rc3-autotest-g99bd3cb0d12e) MSR: 8000000000029033 <SF,EE,ME,IR,DR,RI,LE> CR: 44002402 XER: 20040000 CFAR: c000000000a0d170 IRQMASK: 0 ... NIP iommu_reconfig_notifier+0x94/0x200 LR iommu_reconfig_notifier+0x8c/0x200 Call Trace: iommu_reconfig_notifier+0x8c/0x200 (unreliable) notifier_call_chain+0xb8/0x19c blocking_notifier_call_chain+0x64/0x98 of_reconfig_notify+0x44/0xdc of_detach_node+0x78/0xb0 ofdt_write.part.0+0x86c/0xbb8 proc_reg_write+0xf4/0x150 vfs_write+0xf8/0x488 ksys_write+0x84/0x140 system_call_exception+0x138/0x330 system_call_vectored_common+0x15c/0x2ec The patch adds the missing iommu_group_put() call.
CVE-2024-26708 In the Linux kernel, the following vulnerability has been resolved: mptcp: really cope with fastopen race Fastopen and PM-trigger subflow shutdown can race, as reported by syzkaller. In my first attempt to close such race, I missed the fact that the subflow status can change again before the subflow_state_change callback is invoked. Address the issue additionally copying with all the states directly reachable from TCP_FIN_WAIT1.
CVE-2024-26707 In the Linux kernel, the following vulnerability has been resolved: net: hsr: remove WARN_ONCE() in send_hsr_supervision_frame() Syzkaller reported [1] hitting a warning after failing to allocate resources for skb in hsr_init_skb(). Since a WARN_ONCE() call will not help much in this case, it might be prudent to switch to netdev_warn_once(). At the very least it will suppress syzkaller reports such as [1]. Just in case, use netdev_warn_once() in send_prp_supervision_frame() for similar reasons. [1] HSR: Could not send supervision frame WARNING: CPU: 1 PID: 85 at net/hsr/hsr_device.c:294 send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294 RIP: 0010:send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294 ... Call Trace: <IRQ> hsr_announce+0x114/0x370 net/hsr/hsr_device.c:382 call_timer_fn+0x193/0x590 kernel/time/timer.c:1700 expire_timers kernel/time/timer.c:1751 [inline] __run_timers+0x764/0xb20 kernel/time/timer.c:2022 run_timer_softirq+0x58/0xd0 kernel/time/timer.c:2035 __do_softirq+0x21a/0x8de kernel/softirq.c:553 invoke_softirq kernel/softirq.c:427 [inline] __irq_exit_rcu kernel/softirq.c:632 [inline] irq_exit_rcu+0xb7/0x120 kernel/softirq.c:644 sysvec_apic_timer_interrupt+0x95/0xb0 arch/x86/kernel/apic/apic.c:1076 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:649 ... This issue is also found in older kernels (at least up to 5.10).
CVE-2024-26706 In the Linux kernel, the following vulnerability has been resolved: parisc: Fix random data corruption from exception handler The current exception handler implementation, which assists when accessing user space memory, may exhibit random data corruption if the compiler decides to use a different register than the specified register %r29 (defined in ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another register, the fault handler will nevertheless store -EFAULT into %r29 and thus trash whatever this register is used for. Looking at the assembly I found that this happens sometimes in emulate_ldd(). To solve the issue, the easiest solution would be if it somehow is possible to tell the fault handler which register is used to hold the error code. Using %0 or %1 in the inline assembly is not posssible as it will show up as e.g. %r29 (with the "%r" prefix), which the GNU assembler can not convert to an integer. This patch takes another, better and more flexible approach: We extend the __ex_table (which is out of the execution path) by one 32-word. In this word we tell the compiler to insert the assembler instruction "or %r0,%r0,%reg", where %reg references the register which the compiler choosed for the error return code. In case of an access failure, the fault handler finds the __ex_table entry and can examine the opcode. The used register is encoded in the lowest 5 bits, and the fault handler can then store -EFAULT into this register. Since we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT config option any longer.
CVE-2024-26705 In the Linux kernel, the following vulnerability has been resolved: parisc: BTLB: Fix crash when setting up BTLB at CPU bringup When using hotplug and bringing up a 32-bit CPU, ask the firmware about the BTLB information to set up the static (block) TLB entries. For that write access to the static btlb_info struct is needed, but since it is marked __ro_after_init the kernel segfaults with missing write permissions. Fix the crash by dropping the __ro_after_init annotation.
CVE-2024-26704 In the Linux kernel, the following vulnerability has been resolved: ext4: fix double-free of blocks due to wrong extents moved_len In ext4_move_extents(), moved_len is only updated when all moves are successfully executed, and only discards orig_inode and donor_inode preallocations when moved_len is not zero. When the loop fails to exit after successfully moving some extents, moved_len is not updated and remains at 0, so it does not discard the preallocations. If the moved extents overlap with the preallocated extents, the overlapped extents are freed twice in ext4_mb_release_inode_pa() and ext4_process_freed_data() (as described in commit 94d7c16cbbbd ("ext4: Fix double-free of blocks with EXT4_IOC_MOVE_EXT")), and bb_free is incremented twice. Hence when trim is executed, a zero-division bug is triggered in mb_update_avg_fragment_size() because bb_free is not zero and bb_fragments is zero. Therefore, update move_len after each extent move to avoid the issue.
CVE-2024-26703 In the Linux kernel, the following vulnerability has been resolved: tracing/timerlat: Move hrtimer_init to timerlat_fd open() Currently, the timerlat's hrtimer is initialized at the first read of timerlat_fd, and destroyed at close(). It works, but it causes an error if the user program open() and close() the file without reading. Here's an example: # echo NO_OSNOISE_WORKLOAD > /sys/kernel/debug/tracing/osnoise/options # echo timerlat > /sys/kernel/debug/tracing/current_tracer # cat <<EOF > ./timerlat_load.py # !/usr/bin/env python3 timerlat_fd = open("/sys/kernel/tracing/osnoise/per_cpu/cpu0/timerlat_fd", 'r') timerlat_fd.close(); EOF # ./taskset -c 0 ./timerlat_load.py <BOOM> BUG: kernel NULL pointer dereference, address: 0000000000000010 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 2673 Comm: python3 Not tainted 6.6.13-200.fc39.x86_64 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014 RIP: 0010:hrtimer_active+0xd/0x50 Code: 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 57 30 <8b> 42 10 a8 01 74 09 f3 90 8b 42 10 a8 01 75 f7 80 7f 38 00 75 1d RSP: 0018:ffffb031009b7e10 EFLAGS: 00010286 RAX: 000000000002db00 RBX: ffff9118f786db08 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff9117a0e64400 RDI: ffff9118f786db08 RBP: ffff9118f786db80 R08: ffff9117a0ddd420 R09: ffff9117804d4f70 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9118f786db08 R13: ffff91178fdd5e20 R14: ffff9117840978c0 R15: 0000000000000000 FS: 00007f2ffbab1740(0000) GS:ffff9118f7840000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 00000001b402e000 CR4: 0000000000750ee0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? srso_alias_return_thunk+0x5/0x7f ? avc_has_extended_perms+0x237/0x520 ? exc_page_fault+0x7f/0x180 ? asm_exc_page_fault+0x26/0x30 ? hrtimer_active+0xd/0x50 hrtimer_cancel+0x15/0x40 timerlat_fd_release+0x48/0xe0 __fput+0xf5/0x290 __x64_sys_close+0x3d/0x80 do_syscall_64+0x60/0x90 ? srso_alias_return_thunk+0x5/0x7f ? __x64_sys_ioctl+0x72/0xd0 ? srso_alias_return_thunk+0x5/0x7f ? syscall_exit_to_user_mode+0x2b/0x40 ? srso_alias_return_thunk+0x5/0x7f ? do_syscall_64+0x6c/0x90 ? srso_alias_return_thunk+0x5/0x7f ? exit_to_user_mode_prepare+0x142/0x1f0 ? srso_alias_return_thunk+0x5/0x7f ? syscall_exit_to_user_mode+0x2b/0x40 ? srso_alias_return_thunk+0x5/0x7f ? do_syscall_64+0x6c/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 RIP: 0033:0x7f2ffb321594 Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 cd 0d 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3c c3 0f 1f 00 55 48 89 e5 48 83 ec 10 89 7d RSP: 002b:00007ffe8d8eef18 EFLAGS: 00000202 ORIG_RAX: 0000000000000003 RAX: ffffffffffffffda RBX: 00007f2ffba4e668 RCX: 00007f2ffb321594 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007ffe8d8eef40 R08: 0000000000000000 R09: 0000000000000000 R10: 55c926e3167eae79 R11: 0000000000000202 R12: 0000000000000003 R13: 00007ffe8d8ef030 R14: 0000000000000000 R15: 00007f2ffba4e668 </TASK> CR2: 0000000000000010 ---[ end trace 0000000000000000 ]--- Move hrtimer_init to timerlat_fd open() to avoid this problem.
CVE-2024-26702 In the Linux kernel, the following vulnerability has been resolved: iio: magnetometer: rm3100: add boundary check for the value read from RM3100_REG_TMRC Recently, we encounter kernel crash in function rm3100_common_probe caused by out of bound access of array rm3100_samp_rates (because of underlying hardware failures). Add boundary check to prevent out of bound access.
CVE-2024-26700 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix MST Null Ptr for RV The change try to fix below error specific to RV platform: BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 ? _copy_to_user+0x25/0x30 ? drm_ioctl+0x296/0x4b0 ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 drm_ioctl_kernel+0xcd/0x170 drm_ioctl+0x26d/0x4b0 ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 amdgpu_drm_ioctl+0x4e/0x90 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] __x64_sys_ioctl+0x94/0xd0 do_syscall_64+0x60/0x90 ? do_syscall_64+0x6c/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7f4dad17f76f Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c> RSP: 002b:00007ffd9ae859f0 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 000055e255a55900 RCX: 00007f4dad17f76f RDX: 00007ffd9ae85a90 RSI: 00000000c03864bc RDI: 000000000000000b RBP: 00007ffd9ae85a90 R08: 0000000000000003 R09: 0000000000000003 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000c03864bc R13: 000000000000000b R14: 000055e255a7fc60 R15: 000055e255a01eb0 </TASK> Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device ccm cmac algif_hash algif_skcipher af_alg joydev mousedev bnep > typec libphy k10temp ipmi_msghandler roles i2c_scmi acpi_cpufreq mac_hid nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_mas> CR2: 0000000000000008 ---[ end trace 0000000000000000 ]--- RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000 ---truncated---
CVE-2024-26699 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dcn35_clkmgr [Why] There is a potential memory access violation while iterating through array of dcn35 clks. [How] Limit iteration per array size.
CVE-2024-26698 In the Linux kernel, the following vulnerability has been resolved: hv_netvsc: Fix race condition between netvsc_probe and netvsc_remove In commit ac5047671758 ("hv_netvsc: Disable NAPI before closing the VMBus channel"), napi_disable was getting called for all channels, including all subchannels without confirming if they are enabled or not. This caused hv_netvsc getting hung at napi_disable, when netvsc_probe() has finished running but nvdev->subchan_work has not started yet. netvsc_subchan_work() -> rndis_set_subchannel() has not created the sub-channels and because of that netvsc_sc_open() is not running. netvsc_remove() calls cancel_work_sync(&nvdev->subchan_work), for which netvsc_subchan_work did not run. netif_napi_add() sets the bit NAPI_STATE_SCHED because it ensures NAPI cannot be scheduled. Then netvsc_sc_open() -> napi_enable will clear the NAPIF_STATE_SCHED bit, so it can be scheduled. napi_disable() does the opposite. Now during netvsc_device_remove(), when napi_disable is called for those subchannels, napi_disable gets stuck on infinite msleep. This fix addresses this problem by ensuring that napi_disable() is not getting called for non-enabled NAPI struct. But netif_napi_del() is still necessary for these non-enabled NAPI struct for cleanup purpose. Call trace: [ 654.559417] task:modprobe state:D stack: 0 pid: 2321 ppid: 1091 flags:0x00004002 [ 654.568030] Call Trace: [ 654.571221] <TASK> [ 654.573790] __schedule+0x2d6/0x960 [ 654.577733] schedule+0x69/0xf0 [ 654.581214] schedule_timeout+0x87/0x140 [ 654.585463] ? __bpf_trace_tick_stop+0x20/0x20 [ 654.590291] msleep+0x2d/0x40 [ 654.593625] napi_disable+0x2b/0x80 [ 654.597437] netvsc_device_remove+0x8a/0x1f0 [hv_netvsc] [ 654.603935] rndis_filter_device_remove+0x194/0x1c0 [hv_netvsc] [ 654.611101] ? do_wait_intr+0xb0/0xb0 [ 654.615753] netvsc_remove+0x7c/0x120 [hv_netvsc] [ 654.621675] vmbus_remove+0x27/0x40 [hv_vmbus]
CVE-2024-26697 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix data corruption in dsync block recovery for small block sizes The helper function nilfs_recovery_copy_block() of nilfs_recovery_dsync_blocks(), which recovers data from logs created by data sync writes during a mount after an unclean shutdown, incorrectly calculates the on-page offset when copying repair data to the file's page cache. In environments where the block size is smaller than the page size, this flaw can cause data corruption and leak uninitialized memory bytes during the recovery process. Fix these issues by correcting this byte offset calculation on the page.
CVE-2024-26696 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix hang in nilfs_lookup_dirty_data_buffers() Syzbot reported a hang issue in migrate_pages_batch() called by mbind() and nilfs_lookup_dirty_data_buffers() called in the log writer of nilfs2. While migrate_pages_batch() locks a folio and waits for the writeback to complete, the log writer thread that should bring the writeback to completion picks up the folio being written back in nilfs_lookup_dirty_data_buffers() that it calls for subsequent log creation and was trying to lock the folio. Thus causing a deadlock. In the first place, it is unexpected that folios/pages in the middle of writeback will be updated and become dirty. Nilfs2 adds a checksum to verify the validity of the log being written and uses it for recovery at mount, so data changes during writeback are suppressed. Since this is broken, an unclean shutdown could potentially cause recovery to fail. Investigation revealed that the root cause is that the wait for writeback completion in nilfs_page_mkwrite() is conditional, and if the backing device does not require stable writes, data may be modified without waiting. Fix these issues by making nilfs_page_mkwrite() wait for writeback to finish regardless of the stable write requirement of the backing device.
CVE-2024-26695 In the Linux kernel, the following vulnerability has been resolved: crypto: ccp - Fix null pointer dereference in __sev_platform_shutdown_locked The SEV platform device can be shutdown with a null psp_master, e.g., using DEBUG_TEST_DRIVER_REMOVE. Found using KASAN: [ 137.148210] ccp 0000:23:00.1: enabling device (0000 -> 0002) [ 137.162647] ccp 0000:23:00.1: no command queues available [ 137.170598] ccp 0000:23:00.1: sev enabled [ 137.174645] ccp 0000:23:00.1: psp enabled [ 137.178890] general protection fault, probably for non-canonical address 0xdffffc000000001e: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN NOPTI [ 137.182693] KASAN: null-ptr-deref in range [0x00000000000000f0-0x00000000000000f7] [ 137.182693] CPU: 93 PID: 1 Comm: swapper/0 Not tainted 6.8.0-rc1+ #311 [ 137.182693] RIP: 0010:__sev_platform_shutdown_locked+0x51/0x180 [ 137.182693] Code: 08 80 3c 08 00 0f 85 0e 01 00 00 48 8b 1d 67 b6 01 08 48 b8 00 00 00 00 00 fc ff df 48 8d bb f0 00 00 00 48 89 f9 48 c1 e9 03 <80> 3c 01 00 0f 85 fe 00 00 00 48 8b 9b f0 00 00 00 48 85 db 74 2c [ 137.182693] RSP: 0018:ffffc900000cf9b0 EFLAGS: 00010216 [ 137.182693] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 000000000000001e [ 137.182693] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 00000000000000f0 [ 137.182693] RBP: ffffc900000cf9c8 R08: 0000000000000000 R09: fffffbfff58f5a66 [ 137.182693] R10: ffffc900000cf9c8 R11: ffffffffac7ad32f R12: ffff8881e5052c28 [ 137.182693] R13: ffff8881e5052c28 R14: ffff8881758e43e8 R15: ffffffffac64abf8 [ 137.182693] FS: 0000000000000000(0000) GS:ffff889de7000000(0000) knlGS:0000000000000000 [ 137.182693] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 137.182693] CR2: 0000000000000000 CR3: 0000001cf7c7e000 CR4: 0000000000350ef0 [ 137.182693] Call Trace: [ 137.182693] <TASK> [ 137.182693] ? show_regs+0x6c/0x80 [ 137.182693] ? __die_body+0x24/0x70 [ 137.182693] ? die_addr+0x4b/0x80 [ 137.182693] ? exc_general_protection+0x126/0x230 [ 137.182693] ? asm_exc_general_protection+0x2b/0x30 [ 137.182693] ? __sev_platform_shutdown_locked+0x51/0x180 [ 137.182693] sev_firmware_shutdown.isra.0+0x1e/0x80 [ 137.182693] sev_dev_destroy+0x49/0x100 [ 137.182693] psp_dev_destroy+0x47/0xb0 [ 137.182693] sp_destroy+0xbb/0x240 [ 137.182693] sp_pci_remove+0x45/0x60 [ 137.182693] pci_device_remove+0xaa/0x1d0 [ 137.182693] device_remove+0xc7/0x170 [ 137.182693] really_probe+0x374/0xbe0 [ 137.182693] ? srso_return_thunk+0x5/0x5f [ 137.182693] __driver_probe_device+0x199/0x460 [ 137.182693] driver_probe_device+0x4e/0xd0 [ 137.182693] __driver_attach+0x191/0x3d0 [ 137.182693] ? __pfx___driver_attach+0x10/0x10 [ 137.182693] bus_for_each_dev+0x100/0x190 [ 137.182693] ? __pfx_bus_for_each_dev+0x10/0x10 [ 137.182693] ? __kasan_check_read+0x15/0x20 [ 137.182693] ? srso_return_thunk+0x5/0x5f [ 137.182693] ? _raw_spin_unlock+0x27/0x50 [ 137.182693] driver_attach+0x41/0x60 [ 137.182693] bus_add_driver+0x2a8/0x580 [ 137.182693] driver_register+0x141/0x480 [ 137.182693] __pci_register_driver+0x1d6/0x2a0 [ 137.182693] ? srso_return_thunk+0x5/0x5f [ 137.182693] ? esrt_sysfs_init+0x1cd/0x5d0 [ 137.182693] ? __pfx_sp_mod_init+0x10/0x10 [ 137.182693] sp_pci_init+0x22/0x30 [ 137.182693] sp_mod_init+0x14/0x30 [ 137.182693] ? __pfx_sp_mod_init+0x10/0x10 [ 137.182693] do_one_initcall+0xd1/0x470 [ 137.182693] ? __pfx_do_one_initcall+0x10/0x10 [ 137.182693] ? parameq+0x80/0xf0 [ 137.182693] ? srso_return_thunk+0x5/0x5f [ 137.182693] ? __kmalloc+0x3b0/0x4e0 [ 137.182693] ? kernel_init_freeable+0x92d/0x1050 [ 137.182693] ? kasan_populate_vmalloc_pte+0x171/0x190 [ 137.182693] ? srso_return_thunk+0x5/0x5f [ 137.182693] kernel_init_freeable+0xa64/0x1050 [ 137.182693] ? __pfx_kernel_init+0x10/0x10 [ 137.182693] kernel_init+0x24/0x160 [ 137.182693] ? __switch_to_asm+0x3e/0x70 [ 137.182693] ret_from_fork+0x40/0x80 [ 137.182693] ? __pfx_kernel_init+0x1 ---truncated---
CVE-2024-26694 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: fix double-free bug The storage for the TLV PC register data wasn't done like all the other storage in the drv->fw area, which is cleared at the end of deallocation. Therefore, the freeing must also be done differently, explicitly NULL'ing it out after the free, since otherwise there's a nasty double-free bug here if a file fails to load after this has been parsed, and we get another free later (e.g. because no other file exists.) Fix that by adding the missing NULL assignment.
CVE-2024-26693 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: fix a crash when we run out of stations A DoS tool that injects loads of authentication frames made our AP crash. The iwl_mvm_is_dup() function couldn't find the per-queue dup_data which was not allocated. The root cause for that is that we ran out of stations in the firmware and we didn't really add the station to the firmware, yet we didn't return an error to mac80211. Mac80211 was thinking that we have the station and because of that, sta_info::uploaded was set to 1. This allowed ieee80211_find_sta_by_ifaddr() to return a valid station object, but that ieee80211_sta didn't have any iwl_mvm_sta object initialized and that caused the crash mentioned earlier when we got Rx on that station.
CVE-2024-26692 In the Linux kernel, the following vulnerability has been resolved: smb: Fix regression in writes when non-standard maximum write size negotiated The conversion to netfs in the 6.3 kernel caused a regression when maximum write size is set by the server to an unexpected value which is not a multiple of 4096 (similarly if the user overrides the maximum write size by setting mount parm "wsize", but sets it to a value that is not a multiple of 4096). When negotiated write size is not a multiple of 4096 the netfs code can skip the end of the final page when doing large sequential writes, causing data corruption. This section of code is being rewritten/removed due to a large netfs change, but until that point (ie for the 6.3 kernel until now) we can not support non-standard maximum write sizes. Add a warning if a user specifies a wsize on mount that is not a multiple of 4096 (and round down), also add a change where we round down the maximum write size if the server negotiates a value that is not a multiple of 4096 (we also have to check to make sure that we do not round it down to zero).
CVE-2024-26691 In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Fix circular locking dependency The rule inside kvm enforces that the vcpu->mutex is taken *inside* kvm->lock. The rule is violated by the pkvm_create_hyp_vm() which acquires the kvm->lock while already holding the vcpu->mutex lock from kvm_vcpu_ioctl(). Avoid the circular locking dependency altogether by protecting the hyp vm handle with the config_lock, much like we already do for other forms of VM-scoped data.
CVE-2024-26690 In the Linux kernel, the following vulnerability has been resolved: net: stmmac: protect updates of 64-bit statistics counters As explained by a comment in <linux/u64_stats_sync.h>, write side of struct u64_stats_sync must ensure mutual exclusion, or one seqcount update could be lost on 32-bit platforms, thus blocking readers forever. Such lockups have been observed in real world after stmmac_xmit() on one CPU raced with stmmac_napi_poll_tx() on another CPU. To fix the issue without introducing a new lock, split the statics into three parts: 1. fields updated only under the tx queue lock, 2. fields updated only during NAPI poll, 3. fields updated only from interrupt context, Updates to fields in the first two groups are already serialized through other locks. It is sufficient to split the existing struct u64_stats_sync so that each group has its own. Note that tx_set_ic_bit is updated from both contexts. Split this counter so that each context gets its own, and calculate their sum to get the total value in stmmac_get_ethtool_stats(). For the third group, multiple interrupts may be processed by different CPUs at the same time, but interrupts on the same CPU will not nest. Move fields from this group to a newly created per-cpu struct stmmac_pcpu_stats.
CVE-2024-26689 In the Linux kernel, the following vulnerability has been resolved: ceph: prevent use-after-free in encode_cap_msg() In fs/ceph/caps.c, in encode_cap_msg(), "use after free" error was caught by KASAN at this line - 'ceph_buffer_get(arg->xattr_buf);'. This implies before the refcount could be increment here, it was freed. In same file, in "handle_cap_grant()" refcount is decremented by this line - 'ceph_buffer_put(ci->i_xattrs.blob);'. It appears that a race occurred and resource was freed by the latter line before the former line could increment it. encode_cap_msg() is called by __send_cap() and __send_cap() is called by ceph_check_caps() after calling __prep_cap(). __prep_cap() is where arg->xattr_buf is assigned to ci->i_xattrs.blob. This is the spot where the refcount must be increased to prevent "use after free" error.
CVE-2024-26688 In the Linux kernel, the following vulnerability has been resolved: fs,hugetlb: fix NULL pointer dereference in hugetlbs_fill_super When configuring a hugetlb filesystem via the fsconfig() syscall, there is a possible NULL dereference in hugetlbfs_fill_super() caused by assigning NULL to ctx->hstate in hugetlbfs_parse_param() when the requested pagesize is non valid. E.g: Taking the following steps: fd = fsopen("hugetlbfs", FSOPEN_CLOEXEC); fsconfig(fd, FSCONFIG_SET_STRING, "pagesize", "1024", 0); fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0); Given that the requested "pagesize" is invalid, ctxt->hstate will be replaced with NULL, losing its previous value, and we will print an error: ... ... case Opt_pagesize: ps = memparse(param->string, &rest); ctx->hstate = h; if (!ctx->hstate) { pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); return -EINVAL; } return 0; ... ... This is a problem because later on, we will dereference ctxt->hstate in hugetlbfs_fill_super() ... ... sb->s_blocksize = huge_page_size(ctx->hstate); ... ... Causing below Oops. Fix this by replacing cxt->hstate value only when then pagesize is known to be valid. kernel: hugetlbfs: Unsupported page size 0 MB kernel: BUG: kernel NULL pointer dereference, address: 0000000000000028 kernel: #PF: supervisor read access in kernel mode kernel: #PF: error_code(0x0000) - not-present page kernel: PGD 800000010f66c067 P4D 800000010f66c067 PUD 1b22f8067 PMD 0 kernel: Oops: 0000 [#1] PREEMPT SMP PTI kernel: CPU: 4 PID: 5659 Comm: syscall Tainted: G E 6.8.0-rc2-default+ #22 5a47c3fef76212addcc6eb71344aabc35190ae8f kernel: Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017 kernel: RIP: 0010:hugetlbfs_fill_super+0xb4/0x1a0 kernel: Code: 48 8b 3b e8 3e c6 ed ff 48 85 c0 48 89 45 20 0f 84 d6 00 00 00 48 b8 ff ff ff ff ff ff ff 7f 4c 89 e7 49 89 44 24 20 48 8b 03 <8b> 48 28 b8 00 10 00 00 48 d3 e0 49 89 44 24 18 48 8b 03 8b 40 28 kernel: RSP: 0018:ffffbe9960fcbd48 EFLAGS: 00010246 kernel: RAX: 0000000000000000 RBX: ffff9af5272ae780 RCX: 0000000000372004 kernel: RDX: ffffffffffffffff RSI: ffffffffffffffff RDI: ffff9af555e9b000 kernel: RBP: ffff9af52ee66b00 R08: 0000000000000040 R09: 0000000000370004 kernel: R10: ffffbe9960fcbd48 R11: 0000000000000040 R12: ffff9af555e9b000 kernel: R13: ffffffffa66b86c0 R14: ffff9af507d2f400 R15: ffff9af507d2f400 kernel: FS: 00007ffbc0ba4740(0000) GS:ffff9b0bd7000000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 0000000000000028 CR3: 00000001b1ee0000 CR4: 00000000001506f0 kernel: Call Trace: kernel: <TASK> kernel: ? __die_body+0x1a/0x60 kernel: ? page_fault_oops+0x16f/0x4a0 kernel: ? search_bpf_extables+0x65/0x70 kernel: ? fixup_exception+0x22/0x310 kernel: ? exc_page_fault+0x69/0x150 kernel: ? asm_exc_page_fault+0x22/0x30 kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10 kernel: ? hugetlbfs_fill_super+0xb4/0x1a0 kernel: ? hugetlbfs_fill_super+0x28/0x1a0 kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10 kernel: vfs_get_super+0x40/0xa0 kernel: ? __pfx_bpf_lsm_capable+0x10/0x10 kernel: vfs_get_tree+0x25/0xd0 kernel: vfs_cmd_create+0x64/0xe0 kernel: __x64_sys_fsconfig+0x395/0x410 kernel: do_syscall_64+0x80/0x160 kernel: ? syscall_exit_to_user_mode+0x82/0x240 kernel: ? do_syscall_64+0x8d/0x160 kernel: ? syscall_exit_to_user_mode+0x82/0x240 kernel: ? do_syscall_64+0x8d/0x160 kernel: ? exc_page_fault+0x69/0x150 kernel: entry_SYSCALL_64_after_hwframe+0x6e/0x76 kernel: RIP: 0033:0x7ffbc0cb87c9 kernel: Code: 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 97 96 0d 00 f7 d8 64 89 01 48 kernel: RSP: 002b:00007ffc29d2f388 EFLAGS: 00000206 ORIG_RAX: 00000000000001af kernel: RAX: fffffffffff ---truncated---
CVE-2024-26687 In the Linux kernel, the following vulnerability has been resolved: xen/events: close evtchn after mapping cleanup shutdown_pirq and startup_pirq are not taking the irq_mapping_update_lock because they can't due to lock inversion. Both are called with the irq_desc->lock being taking. The lock order, however, is first irq_mapping_update_lock and then irq_desc->lock. This opens multiple races: - shutdown_pirq can be interrupted by a function that allocates an event channel: CPU0 CPU1 shutdown_pirq { xen_evtchn_close(e) __startup_pirq { EVTCHNOP_bind_pirq -> returns just freed evtchn e set_evtchn_to_irq(e, irq) } xen_irq_info_cleanup() { set_evtchn_to_irq(e, -1) } } Assume here event channel e refers here to the same event channel number. After this race the evtchn_to_irq mapping for e is invalid (-1). - __startup_pirq races with __unbind_from_irq in a similar way. Because __startup_pirq doesn't take irq_mapping_update_lock it can grab the evtchn that __unbind_from_irq is currently freeing and cleaning up. In this case even though the event channel is allocated, its mapping can be unset in evtchn_to_irq. The fix is to first cleanup the mappings and then close the event channel. In this way, when an event channel gets allocated it's potential previous evtchn_to_irq mappings are guaranteed to be unset already. This is also the reverse order of the allocation where first the event channel is allocated and then the mappings are setup. On a 5.10 kernel prior to commit 3fcdaf3d7634 ("xen/events: modify internal [un]bind interfaces"), we hit a BUG like the following during probing of NVMe devices. The issue is that during nvme_setup_io_queues, pci_free_irq is called for every device which results in a call to shutdown_pirq. With many nvme devices it's therefore likely to hit this race during boot because there will be multiple calls to shutdown_pirq and startup_pirq are running potentially in parallel. ------------[ cut here ]------------ blkfront: xvda: barrier or flush: disabled; persistent grants: enabled; indirect descriptors: enabled; bounce buffer: enabled kernel BUG at drivers/xen/events/events_base.c:499! invalid opcode: 0000 [#1] SMP PTI CPU: 44 PID: 375 Comm: kworker/u257:23 Not tainted 5.10.201-191.748.amzn2.x86_64 #1 Hardware name: Xen HVM domU, BIOS 4.11.amazon 08/24/2006 Workqueue: nvme-reset-wq nvme_reset_work RIP: 0010:bind_evtchn_to_cpu+0xdf/0xf0 Code: 5d 41 5e c3 cc cc cc cc 44 89 f7 e8 2b 55 ad ff 49 89 c5 48 85 c0 0f 84 64 ff ff ff 4c 8b 68 30 41 83 fe ff 0f 85 60 ff ff ff <0f> 0b 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00 RSP: 0000:ffffc9000d533b08 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000006 RDX: 0000000000000028 RSI: 00000000ffffffff RDI: 00000000ffffffff RBP: ffff888107419680 R08: 0000000000000000 R09: ffffffff82d72b00 R10: 0000000000000000 R11: 0000000000000000 R12: 00000000000001ed R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000002 FS: 0000000000000000(0000) GS:ffff88bc8b500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000002610001 CR4: 00000000001706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? show_trace_log_lvl+0x1c1/0x2d9 ? show_trace_log_lvl+0x1c1/0x2d9 ? set_affinity_irq+0xdc/0x1c0 ? __die_body.cold+0x8/0xd ? die+0x2b/0x50 ? do_trap+0x90/0x110 ? bind_evtchn_to_cpu+0xdf/0xf0 ? do_error_trap+0x65/0x80 ? bind_evtchn_to_cpu+0xdf/0xf0 ? exc_invalid_op+0x4e/0x70 ? bind_evtchn_to_cpu+0xdf/0xf0 ? asm_exc_invalid_op+0x12/0x20 ? bind_evtchn_to_cpu+0xdf/0x ---truncated---
CVE-2024-26686 In the Linux kernel, the following vulnerability has been resolved: fs/proc: do_task_stat: use sig->stats_lock to gather the threads/children stats lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call do_task_stat() at the same time and the process has NR_THREADS, it will spin with irqs disabled O(NR_CPUS * NR_THREADS) time. Change do_task_stat() to use sig->stats_lock to gather the statistics outside of ->siglock protected section, in the likely case this code will run lockless.
CVE-2024-26685 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential bug in end_buffer_async_write According to a syzbot report, end_buffer_async_write(), which handles the completion of block device writes, may detect abnormal condition of the buffer async_write flag and cause a BUG_ON failure when using nilfs2. Nilfs2 itself does not use end_buffer_async_write(). But, the async_write flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") as a means of resolving double list insertion of dirty blocks in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the resulting crash. This modification is safe as long as it is used for file data and b-tree node blocks where the page caches are independent. However, it was irrelevant and redundant to also introduce async_write for segment summary and super root blocks that share buffers with the backing device. This led to the possibility that the BUG_ON check in end_buffer_async_write would fail as described above, if independent writebacks of the backing device occurred in parallel. The use of async_write for segment summary buffers has already been removed in a previous change. Fix this issue by removing the manipulation of the async_write flag for the remaining super root block buffer.
CVE-2024-26684 In the Linux kernel, the following vulnerability has been resolved: net: stmmac: xgmac: fix handling of DPP safety error for DMA channels Commit 56e58d6c8a56 ("net: stmmac: Implement Safety Features in XGMAC core") checks and reports safety errors, but leaves the Data Path Parity Errors for each channel in DMA unhandled at all, lead to a storm of interrupt. Fix it by checking and clearing the DMA_DPP_Interrupt_Status register.
CVE-2024-26683 In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: detect stuck ECSA element in probe resp We recently added some validation that we don't try to connect to an AP that is currently in a channel switch process, since that might want the channel to be quiet or we might not be able to connect in time to hear the switching in a beacon. This was in commit c09c4f31998b ("wifi: mac80211: don't connect to an AP while it's in a CSA process"). However, we promptly got a report that this caused new connection failures, and it turns out that the AP that we now cannot connect to is permanently advertising an extended channel switch announcement, even with quiet. The AP in question was an Asus RT-AC53, with firmware 3.0.0.4.380_10760-g21a5898. As a first step, attempt to detect that we're dealing with such a situation, so mac80211 can use this later.
CVE-2024-26682 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: improve CSA/ECSA connection refusal As mentioned in the previous commit, we pretty quickly found that some APs have ECSA elements stuck in their probe response, so using that to not attempt to connect while CSA is happening we never connect to such an AP. Improve this situation by checking more carefully and ignoring the ECSA if cfg80211 has previously detected the ECSA element being stuck in the probe response. Additionally, allow connecting to an AP that's switching to a channel it's already using, unless it's using quiet mode. In this case, we may just have to adjust bandwidth later. If it's actually switching channels, it's better not to try to connect in the middle of that.
CVE-2024-26681 In the Linux kernel, the following vulnerability has been resolved: netdevsim: avoid potential loop in nsim_dev_trap_report_work() Many syzbot reports include the following trace [1] If nsim_dev_trap_report_work() can not grab the mutex, it should rearm itself at least one jiffie later. [1] Sending NMI from CPU 1 to CPUs 0: NMI backtrace for cpu 0 CPU: 0 PID: 32383 Comm: kworker/0:2 Not tainted 6.8.0-rc2-syzkaller-00031-g861c0981648f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 Workqueue: events nsim_dev_trap_report_work RIP: 0010:bytes_is_nonzero mm/kasan/generic.c:89 [inline] RIP: 0010:memory_is_nonzero mm/kasan/generic.c:104 [inline] RIP: 0010:memory_is_poisoned_n mm/kasan/generic.c:129 [inline] RIP: 0010:memory_is_poisoned mm/kasan/generic.c:161 [inline] RIP: 0010:check_region_inline mm/kasan/generic.c:180 [inline] RIP: 0010:kasan_check_range+0x101/0x190 mm/kasan/generic.c:189 Code: 07 49 39 d1 75 0a 45 3a 11 b8 01 00 00 00 7c 0b 44 89 c2 e8 21 ed ff ff 83 f0 01 5b 5d 41 5c c3 48 85 d2 74 4f 48 01 ea eb 09 <48> 83 c0 01 48 39 d0 74 41 80 38 00 74 f2 eb b6 41 bc 08 00 00 00 RSP: 0018:ffffc90012dcf998 EFLAGS: 00000046 RAX: fffffbfff258af1e RBX: fffffbfff258af1f RCX: ffffffff8168eda3 RDX: fffffbfff258af1f RSI: 0000000000000004 RDI: ffffffff92c578f0 RBP: fffffbfff258af1e R08: 0000000000000000 R09: fffffbfff258af1e R10: ffffffff92c578f3 R11: ffffffff8acbcbc0 R12: 0000000000000002 R13: ffff88806db38400 R14: 1ffff920025b9f42 R15: ffffffff92c578e8 FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000c00994e078 CR3: 000000002c250000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <NMI> </NMI> <TASK> instrument_atomic_read include/linux/instrumented.h:68 [inline] atomic_read include/linux/atomic/atomic-instrumented.h:32 [inline] queued_spin_is_locked include/asm-generic/qspinlock.h:57 [inline] debug_spin_unlock kernel/locking/spinlock_debug.c:101 [inline] do_raw_spin_unlock+0x53/0x230 kernel/locking/spinlock_debug.c:141 __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:150 [inline] _raw_spin_unlock_irqrestore+0x22/0x70 kernel/locking/spinlock.c:194 debug_object_activate+0x349/0x540 lib/debugobjects.c:726 debug_work_activate kernel/workqueue.c:578 [inline] insert_work+0x30/0x230 kernel/workqueue.c:1650 __queue_work+0x62e/0x11d0 kernel/workqueue.c:1802 __queue_delayed_work+0x1bf/0x270 kernel/workqueue.c:1953 queue_delayed_work_on+0x106/0x130 kernel/workqueue.c:1989 queue_delayed_work include/linux/workqueue.h:563 [inline] schedule_delayed_work include/linux/workqueue.h:677 [inline] nsim_dev_trap_report_work+0x9c0/0xc80 drivers/net/netdevsim/dev.c:842 process_one_work+0x886/0x15d0 kernel/workqueue.c:2633 process_scheduled_works kernel/workqueue.c:2706 [inline] worker_thread+0x8b9/0x1290 kernel/workqueue.c:2787 kthread+0x2c6/0x3a0 kernel/kthread.c:388 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242 </TASK>
CVE-2024-26680 In the Linux kernel, the following vulnerability has been resolved: net: atlantic: Fix DMA mapping for PTP hwts ring Function aq_ring_hwts_rx_alloc() maps extra AQ_CFG_RXDS_DEF bytes for PTP HWTS ring but then generic aq_ring_free() does not take this into account. Create and use a specific function to free HWTS ring to fix this issue. Trace: [ 215.351607] ------------[ cut here ]------------ [ 215.351612] DMA-API: atlantic 0000:4b:00.0: device driver frees DMA memory with different size [device address=0x00000000fbdd0000] [map size=34816 bytes] [unmap size=32768 bytes] [ 215.351635] WARNING: CPU: 33 PID: 10759 at kernel/dma/debug.c:988 check_unmap+0xa6f/0x2360 ... [ 215.581176] Call Trace: [ 215.583632] <TASK> [ 215.585745] ? show_trace_log_lvl+0x1c4/0x2df [ 215.590114] ? show_trace_log_lvl+0x1c4/0x2df [ 215.594497] ? debug_dma_free_coherent+0x196/0x210 [ 215.599305] ? check_unmap+0xa6f/0x2360 [ 215.603147] ? __warn+0xca/0x1d0 [ 215.606391] ? check_unmap+0xa6f/0x2360 [ 215.610237] ? report_bug+0x1ef/0x370 [ 215.613921] ? handle_bug+0x3c/0x70 [ 215.617423] ? exc_invalid_op+0x14/0x50 [ 215.621269] ? asm_exc_invalid_op+0x16/0x20 [ 215.625480] ? check_unmap+0xa6f/0x2360 [ 215.629331] ? mark_lock.part.0+0xca/0xa40 [ 215.633445] debug_dma_free_coherent+0x196/0x210 [ 215.638079] ? __pfx_debug_dma_free_coherent+0x10/0x10 [ 215.643242] ? slab_free_freelist_hook+0x11d/0x1d0 [ 215.648060] dma_free_attrs+0x6d/0x130 [ 215.651834] aq_ring_free+0x193/0x290 [atlantic] [ 215.656487] aq_ptp_ring_free+0x67/0x110 [atlantic] ... [ 216.127540] ---[ end trace 6467e5964dd2640b ]--- [ 216.132160] DMA-API: Mapped at: [ 216.132162] debug_dma_alloc_coherent+0x66/0x2f0 [ 216.132165] dma_alloc_attrs+0xf5/0x1b0 [ 216.132168] aq_ring_hwts_rx_alloc+0x150/0x1f0 [atlantic] [ 216.132193] aq_ptp_ring_alloc+0x1bb/0x540 [atlantic] [ 216.132213] aq_nic_init+0x4a1/0x760 [atlantic]
CVE-2024-26679 In the Linux kernel, the following vulnerability has been resolved: inet: read sk->sk_family once in inet_recv_error() inet_recv_error() is called without holding the socket lock. IPv6 socket could mutate to IPv4 with IPV6_ADDRFORM socket option and trigger a KCSAN warning.
CVE-2024-26678 In the Linux kernel, the following vulnerability has been resolved: x86/efistub: Use 1:1 file:memory mapping for PE/COFF .compat section The .compat section is a dummy PE section that contains the address of the 32-bit entrypoint of the 64-bit kernel image if it is bootable from 32-bit firmware (i.e., CONFIG_EFI_MIXED=y) This section is only 8 bytes in size and is only referenced from the loader, and so it is placed at the end of the memory view of the image, to avoid the need for padding it to 4k, which is required for sections appearing in the middle of the image. Unfortunately, this violates the PE/COFF spec, and even if most EFI loaders will work correctly (including the Tianocore reference implementation), PE loaders do exist that reject such images, on the basis that both the file and memory views of the file contents should be described by the section headers in a monotonically increasing manner without leaving any gaps. So reorganize the sections to avoid this issue. This results in a slight padding overhead (< 4k) which can be avoided if desired by disabling CONFIG_EFI_MIXED (which is only needed in rare cases these days)
CVE-2024-26677 In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix delayed ACKs to not set the reference serial number Fix the construction of delayed ACKs to not set the reference serial number as they can't be used as an RTT reference.
CVE-2024-26676 In the Linux kernel, the following vulnerability has been resolved: af_unix: Call kfree_skb() for dead unix_(sk)->oob_skb in GC. syzbot reported a warning [0] in __unix_gc() with a repro, which creates a socketpair and sends one socket's fd to itself using the peer. socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0 sendmsg(4, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="\360", iov_len=1}], msg_iovlen=1, msg_control=[{cmsg_len=20, cmsg_level=SOL_SOCKET, cmsg_type=SCM_RIGHTS, cmsg_data=[3]}], msg_controllen=24, msg_flags=0}, MSG_OOB|MSG_PROBE|MSG_DONTWAIT|MSG_ZEROCOPY) = 1 This forms a self-cyclic reference that GC should finally untangle but does not due to lack of MSG_OOB handling, resulting in memory leak. Recently, commit 11498715f266 ("af_unix: Remove io_uring code for GC.") removed io_uring's dead code in GC and revealed the problem. The code was executed at the final stage of GC and unconditionally moved all GC candidates from gc_candidates to gc_inflight_list. That papered over the reported problem by always making the following WARN_ON_ONCE(!list_empty(&gc_candidates)) false. The problem has been there since commit 2aab4b969002 ("af_unix: fix struct pid leaks in OOB support") added full scm support for MSG_OOB while fixing another bug. To fix this problem, we must call kfree_skb() for unix_sk(sk)->oob_skb if the socket still exists in gc_candidates after purging collected skb. Then, we need to set NULL to oob_skb before calling kfree_skb() because it calls last fput() and triggers unix_release_sock(), where we call duplicate kfree_skb(u->oob_skb) if not NULL. Note that the leaked socket remained being linked to a global list, so kmemleak also could not detect it. We need to check /proc/net/protocol to notice the unfreed socket. [0]: WARNING: CPU: 0 PID: 2863 at net/unix/garbage.c:345 __unix_gc+0xc74/0xe80 net/unix/garbage.c:345 Modules linked in: CPU: 0 PID: 2863 Comm: kworker/u4:11 Not tainted 6.8.0-rc1-syzkaller-00583-g1701940b1a02 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Workqueue: events_unbound __unix_gc RIP: 0010:__unix_gc+0xc74/0xe80 net/unix/garbage.c:345 Code: 8b 5c 24 50 e9 86 f8 ff ff e8 f8 e4 22 f8 31 d2 48 c7 c6 30 6a 69 89 4c 89 ef e8 97 ef ff ff e9 80 f9 ff ff e8 dd e4 22 f8 90 <0f> 0b 90 e9 7b fd ff ff 48 89 df e8 5c e7 7c f8 e9 d3 f8 ff ff e8 RSP: 0018:ffffc9000b03fba0 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffffc9000b03fc10 RCX: ffffffff816c493e RDX: ffff88802c02d940 RSI: ffffffff896982f3 RDI: ffffc9000b03fb30 RBP: ffffc9000b03fce0 R08: 0000000000000001 R09: fffff52001607f66 R10: 0000000000000003 R11: 0000000000000002 R12: dffffc0000000000 R13: ffffc9000b03fc10 R14: ffffc9000b03fc10 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005559c8677a60 CR3: 000000000d57a000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> process_one_work+0x889/0x15e0 kernel/workqueue.c:2633 process_scheduled_works kernel/workqueue.c:2706 [inline] worker_thread+0x8b9/0x12a0 kernel/workqueue.c:2787 kthread+0x2c6/0x3b0 kernel/kthread.c:388 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242 </TASK>
CVE-2024-26675 In the Linux kernel, the following vulnerability has been resolved: ppp_async: limit MRU to 64K syzbot triggered a warning [1] in __alloc_pages(): WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp) Willem fixed a similar issue in commit c0a2a1b0d631 ("ppp: limit MRU to 64K") Adopt the same sanity check for ppp_async_ioctl(PPPIOCSMRU) [1]: WARNING: CPU: 1 PID: 11 at mm/page_alloc.c:4543 __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 Modules linked in: CPU: 1 PID: 11 Comm: kworker/u4:0 Not tainted 6.8.0-rc2-syzkaller-g41bccc98fb79 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 Workqueue: events_unbound flush_to_ldisc pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 lr : __alloc_pages+0xc8/0x698 mm/page_alloc.c:4537 sp : ffff800093967580 x29: ffff800093967660 x28: ffff8000939675a0 x27: dfff800000000000 x26: ffff70001272ceb4 x25: 0000000000000000 x24: ffff8000939675c0 x23: 0000000000000000 x22: 0000000000060820 x21: 1ffff0001272ceb8 x20: ffff8000939675e0 x19: 0000000000000010 x18: ffff800093967120 x17: ffff800083bded5c x16: ffff80008ac97500 x15: 0000000000000005 x14: 1ffff0001272cebc x13: 0000000000000000 x12: 0000000000000000 x11: ffff70001272cec1 x10: 1ffff0001272cec0 x9 : 0000000000000001 x8 : ffff800091c91000 x7 : 0000000000000000 x6 : 000000000000003f x5 : 00000000ffffffff x4 : 0000000000000000 x3 : 0000000000000020 x2 : 0000000000000008 x1 : 0000000000000000 x0 : ffff8000939675e0 Call trace: __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 __alloc_pages_node include/linux/gfp.h:238 [inline] alloc_pages_node include/linux/gfp.h:261 [inline] __kmalloc_large_node+0xbc/0x1fc mm/slub.c:3926 __do_kmalloc_node mm/slub.c:3969 [inline] __kmalloc_node_track_caller+0x418/0x620 mm/slub.c:4001 kmalloc_reserve+0x17c/0x23c net/core/skbuff.c:590 __alloc_skb+0x1c8/0x3d8 net/core/skbuff.c:651 __netdev_alloc_skb+0xb8/0x3e8 net/core/skbuff.c:715 netdev_alloc_skb include/linux/skbuff.h:3235 [inline] dev_alloc_skb include/linux/skbuff.h:3248 [inline] ppp_async_input drivers/net/ppp/ppp_async.c:863 [inline] ppp_asynctty_receive+0x588/0x186c drivers/net/ppp/ppp_async.c:341 tty_ldisc_receive_buf+0x12c/0x15c drivers/tty/tty_buffer.c:390 tty_port_default_receive_buf+0x74/0xac drivers/tty/tty_port.c:37 receive_buf drivers/tty/tty_buffer.c:444 [inline] flush_to_ldisc+0x284/0x6e4 drivers/tty/tty_buffer.c:494 process_one_work+0x694/0x1204 kernel/workqueue.c:2633 process_scheduled_works kernel/workqueue.c:2706 [inline] worker_thread+0x938/0xef4 kernel/workqueue.c:2787 kthread+0x288/0x310 kernel/kthread.c:388 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
CVE-2024-26674 In the Linux kernel, the following vulnerability has been resolved: x86/lib: Revert to _ASM_EXTABLE_UA() for {get,put}_user() fixups During memory error injection test on kernels >= v6.4, the kernel panics like below. However, this issue couldn't be reproduced on kernels <= v6.3. mce: [Hardware Error]: CPU 296: Machine Check Exception: f Bank 1: bd80000000100134 mce: [Hardware Error]: RIP 10:<ffffffff821b9776> {__get_user_nocheck_4+0x6/0x20} mce: [Hardware Error]: TSC 411a93533ed ADDR 346a8730040 MISC 86 mce: [Hardware Error]: PROCESSOR 0:a06d0 TIME 1706000767 SOCKET 1 APIC 211 microcode 80001490 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The MCA code can recover from an in-kernel #MC if the fixup type is EX_TYPE_UACCESS, explicitly indicating that the kernel is attempting to access userspace memory. However, if the fixup type is EX_TYPE_DEFAULT the only thing that is raised for an in-kernel #MC is a panic. ex_handler_uaccess() would warn if users gave a non-canonical addresses (with bit 63 clear) to {get, put}_user(), which was unexpected. Therefore, commit b19b74bc99b1 ("x86/mm: Rework address range check in get_user() and put_user()") replaced _ASM_EXTABLE_UA() with _ASM_EXTABLE() for {get, put}_user() fixups. However, the new fixup type EX_TYPE_DEFAULT results in a panic. Commit 6014bc27561f ("x86-64: make access_ok() independent of LAM") added the check gp_fault_address_ok() right before the WARN_ONCE() in ex_handler_uaccess() to not warn about non-canonical user addresses due to LAM. With that in place, revert back to _ASM_EXTABLE_UA() for {get,put}_user() exception fixups in order to be able to handle in-kernel MCEs correctly again. [ bp: Massage commit message. ]
CVE-2024-26673 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_ct: sanitize layer 3 and 4 protocol number in custom expectations - Disallow families other than NFPROTO_{IPV4,IPV6,INET}. - Disallow layer 4 protocol with no ports, since destination port is a mandatory attribute for this object.
CVE-2024-26672 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix variable 'mca_funcs' dereferenced before NULL check in 'amdgpu_mca_smu_get_mca_entry()' Fixes the below: drivers/gpu/drm/amd/amdgpu/amdgpu_mca.c:377 amdgpu_mca_smu_get_mca_entry() warn: variable dereferenced before check 'mca_funcs' (see line 368) 357 int amdgpu_mca_smu_get_mca_entry(struct amdgpu_device *adev, enum amdgpu_mca_error_type type, 358 int idx, struct mca_bank_entry *entry) 359 { 360 const struct amdgpu_mca_smu_funcs *mca_funcs = adev->mca.mca_funcs; 361 int count; 362 363 switch (type) { 364 case AMDGPU_MCA_ERROR_TYPE_UE: 365 count = mca_funcs->max_ue_count; mca_funcs is dereferenced here. 366 break; 367 case AMDGPU_MCA_ERROR_TYPE_CE: 368 count = mca_funcs->max_ce_count; mca_funcs is dereferenced here. 369 break; 370 default: 371 return -EINVAL; 372 } 373 374 if (idx >= count) 375 return -EINVAL; 376 377 if (mca_funcs && mca_funcs->mca_get_mca_entry) ^^^^^^^^^ Checked too late!
CVE-2024-26671 In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix IO hang from sbitmap wakeup race In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered with the following blk_mq_get_driver_tag() in case of getting driver tag failure. Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime blk_mq_mark_tag_wait() can't get driver tag successfully. This issue can be reproduced by running the following test in loop, and fio hang can be observed in < 30min when running it on my test VM in laptop. modprobe -r scsi_debug modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4 dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename` fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \ --runtime=100 --numjobs=40 --time_based --name=test \ --ioengine=libaio Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which is just fine in case of running out of tag.
CVE-2024-26670 In the Linux kernel, the following vulnerability has been resolved: arm64: entry: fix ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD Currently the ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround isn't quite right, as it is supposed to be applied after the last explicit memory access, but is immediately followed by an LDR. The ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround is used to handle Cortex-A520 erratum 2966298 and Cortex-A510 erratum 3117295, which are described in: * https://developer.arm.com/documentation/SDEN2444153/0600/?lang=en * https://developer.arm.com/documentation/SDEN1873361/1600/?lang=en In both cases the workaround is described as: | If pagetable isolation is disabled, the context switch logic in the | kernel can be updated to execute the following sequence on affected | cores before exiting to EL0, and after all explicit memory accesses: | | 1. A non-shareable TLBI to any context and/or address, including | unused contexts or addresses, such as a `TLBI VALE1 Xzr`. | | 2. A DSB NSH to guarantee completion of the TLBI. The important part being that the TLBI+DSB must be placed "after all explicit memory accesses". Unfortunately, as-implemented, the TLBI+DSB is immediately followed by an LDR, as we have: | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | alternative_if_not ARM64_UNMAP_KERNEL_AT_EL0 | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | eret | alternative_else_nop_endif | | [ ... KPTI exception return path ... ] This patch fixes this by reworking the logic to place the TLBI+DSB immediately before the ERET, after all explicit memory accesses. The ERET is currently in a separate alternative block, and alternatives cannot be nested. To account for this, the alternative block for ARM64_UNMAP_KERNEL_AT_EL0 is replaced with a single alternative branch to skip the KPTI logic, with the new shape of the logic being: | alternative_insn "b .L_skip_tramp_exit_\@", nop, ARM64_UNMAP_KERNEL_AT_EL0 | [ ... KPTI exception return path ... ] | .L_skip_tramp_exit_\@: | | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | eret The new structure means that the workaround is only applied when KPTI is not in use; this is fine as noted in the documented implications of the erratum: | Pagetable isolation between EL0 and higher level ELs prevents the | issue from occurring. ... and as per the workaround description quoted above, the workaround is only necessary "If pagetable isolation is disabled".
CVE-2024-26669 In the Linux kernel, the following vulnerability has been resolved: net/sched: flower: Fix chain template offload When a qdisc is deleted from a net device the stack instructs the underlying driver to remove its flow offload callback from the associated filter block using the 'FLOW_BLOCK_UNBIND' command. The stack then continues to replay the removal of the filters in the block for this driver by iterating over the chains in the block and invoking the 'reoffload' operation of the classifier being used. In turn, the classifier in its 'reoffload' operation prepares and emits a 'FLOW_CLS_DESTROY' command for each filter. However, the stack does not do the same for chain templates and the underlying driver never receives a 'FLOW_CLS_TMPLT_DESTROY' command when a qdisc is deleted. This results in a memory leak [1] which can be reproduced using [2]. Fix by introducing a 'tmplt_reoffload' operation and have the stack invoke it with the appropriate arguments as part of the replay. Implement the operation in the sole classifier that supports chain templates (flower) by emitting the 'FLOW_CLS_TMPLT_{CREATE,DESTROY}' command based on whether a flow offload callback is being bound to a filter block or being unbound from one. As far as I can tell, the issue happens since cited commit which reordered tcf_block_offload_unbind() before tcf_block_flush_all_chains() in __tcf_block_put(). The order cannot be reversed as the filter block is expected to be freed after flushing all the chains. [1] unreferenced object 0xffff888107e28800 (size 2048): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): b1 a6 7c 11 81 88 ff ff e0 5b b3 10 81 88 ff ff ..|......[...... 01 00 00 00 00 00 00 00 e0 aa b0 84 ff ff ff ff ................ backtrace: [<ffffffff81c06a68>] __kmem_cache_alloc_node+0x1e8/0x320 [<ffffffff81ab374e>] __kmalloc+0x4e/0x90 [<ffffffff832aec6d>] mlxsw_sp_acl_ruleset_get+0x34d/0x7a0 [<ffffffff832bc195>] mlxsw_sp_flower_tmplt_create+0x145/0x180 [<ffffffff832b2e1a>] mlxsw_sp_flow_block_cb+0x1ea/0x280 [<ffffffff83a10613>] tc_setup_cb_call+0x183/0x340 [<ffffffff83a9f85a>] fl_tmplt_create+0x3da/0x4c0 [<ffffffff83a22435>] tc_ctl_chain+0xa15/0x1170 [<ffffffff838a863c>] rtnetlink_rcv_msg+0x3cc/0xed0 [<ffffffff83ac87f0>] netlink_rcv_skb+0x170/0x440 [<ffffffff83ac6270>] netlink_unicast+0x540/0x820 [<ffffffff83ac6e28>] netlink_sendmsg+0x8d8/0xda0 [<ffffffff83793def>] ____sys_sendmsg+0x30f/0xa80 [<ffffffff8379d29a>] ___sys_sendmsg+0x13a/0x1e0 [<ffffffff8379d50c>] __sys_sendmsg+0x11c/0x1f0 [<ffffffff843b9ce0>] do_syscall_64+0x40/0xe0 unreferenced object 0xffff88816d2c0400 (size 1024): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): 40 00 00 00 00 00 00 00 57 f6 38 be 00 00 00 00 @.......W.8..... 10 04 2c 6d 81 88 ff ff 10 04 2c 6d 81 88 ff ff ..,m......,m.... backtrace: [<ffffffff81c06a68>] __kmem_cache_alloc_node+0x1e8/0x320 [<ffffffff81ab36c1>] __kmalloc_node+0x51/0x90 [<ffffffff81a8ed96>] kvmalloc_node+0xa6/0x1f0 [<ffffffff82827d03>] bucket_table_alloc.isra.0+0x83/0x460 [<ffffffff82828d2b>] rhashtable_init+0x43b/0x7c0 [<ffffffff832aed48>] mlxsw_sp_acl_ruleset_get+0x428/0x7a0 [<ffffffff832bc195>] mlxsw_sp_flower_tmplt_create+0x145/0x180 [<ffffffff832b2e1a>] mlxsw_sp_flow_block_cb+0x1ea/0x280 [<ffffffff83a10613>] tc_setup_cb_call+0x183/0x340 [<ffffffff83a9f85a>] fl_tmplt_create+0x3da/0x4c0 [<ffffffff83a22435>] tc_ctl_chain+0xa15/0x1170 [<ffffffff838a863c>] rtnetlink_rcv_msg+0x3cc/0xed0 [<ffffffff83ac87f0>] netlink_rcv_skb+0x170/0x440 [<ffffffff83ac6270>] netlink_unicast+0x540/0x820 [<ffffffff83ac6e28>] netlink_sendmsg+0x8d8/0xda0 [<ffffffff83793def>] ____sys_sendmsg+0x30f/0xa80 [2] # tc qdisc add dev swp1 clsact # tc chain add dev swp1 ingress proto ip chain 1 flower dst_ip 0.0.0.0/32 # tc qdisc del dev ---truncated---
CVE-2024-26668 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_limit: reject configurations that cause integer overflow Reject bogus configs where internal token counter wraps around. This only occurs with very very large requests, such as 17gbyte/s. Its better to reject this rather than having incorrect ratelimit.
CVE-2024-26667 In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: check for valid hw_pp in dpu_encoder_helper_phys_cleanup The commit 8b45a26f2ba9 ("drm/msm/dpu: reserve cdm blocks for writeback in case of YUV output") introduced a smatch warning about another conditional block in dpu_encoder_helper_phys_cleanup() which had assumed hw_pp will always be valid which may not necessarily be true. Lets fix the other conditional block by making sure hw_pp is valid before dereferencing it. Patchwork: https://patchwork.freedesktop.org/patch/574878/
CVE-2024-26666 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix RCU use in TDLS fast-xmit This looks up the link under RCU protection, but isn't guaranteed to actually have protection. Fix that.
CVE-2024-26665 In the Linux kernel, the following vulnerability has been resolved: tunnels: fix out of bounds access when building IPv6 PMTU error If the ICMPv6 error is built from a non-linear skb we get the following splat, BUG: KASAN: slab-out-of-bounds in do_csum+0x220/0x240 Read of size 4 at addr ffff88811d402c80 by task netperf/820 CPU: 0 PID: 820 Comm: netperf Not tainted 6.8.0-rc1+ #543 ... kasan_report+0xd8/0x110 do_csum+0x220/0x240 csum_partial+0xc/0x20 skb_tunnel_check_pmtu+0xeb9/0x3280 vxlan_xmit_one+0x14c2/0x4080 vxlan_xmit+0xf61/0x5c00 dev_hard_start_xmit+0xfb/0x510 __dev_queue_xmit+0x7cd/0x32a0 br_dev_queue_push_xmit+0x39d/0x6a0 Use skb_checksum instead of csum_partial who cannot deal with non-linear SKBs.
CVE-2024-26664 In the Linux kernel, the following vulnerability has been resolved: hwmon: (coretemp) Fix out-of-bounds memory access Fix a bug that pdata->cpu_map[] is set before out-of-bounds check. The problem might be triggered on systems with more than 128 cores per package.
CVE-2024-26663 In the Linux kernel, the following vulnerability has been resolved: tipc: Check the bearer type before calling tipc_udp_nl_bearer_add() syzbot reported the following general protection fault [1]: general protection fault, probably for non-canonical address 0xdffffc0000000010: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000080-0x0000000000000087] ... RIP: 0010:tipc_udp_is_known_peer+0x9c/0x250 net/tipc/udp_media.c:291 ... Call Trace: <TASK> tipc_udp_nl_bearer_add+0x212/0x2f0 net/tipc/udp_media.c:646 tipc_nl_bearer_add+0x21e/0x360 net/tipc/bearer.c:1089 genl_family_rcv_msg_doit+0x1fc/0x2e0 net/netlink/genetlink.c:972 genl_family_rcv_msg net/netlink/genetlink.c:1052 [inline] genl_rcv_msg+0x561/0x800 net/netlink/genetlink.c:1067 netlink_rcv_skb+0x16b/0x440 net/netlink/af_netlink.c:2544 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1076 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x53b/0x810 net/netlink/af_netlink.c:1367 netlink_sendmsg+0x8b7/0xd70 net/netlink/af_netlink.c:1909 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0xd5/0x180 net/socket.c:745 ____sys_sendmsg+0x6ac/0x940 net/socket.c:2584 ___sys_sendmsg+0x135/0x1d0 net/socket.c:2638 __sys_sendmsg+0x117/0x1e0 net/socket.c:2667 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x40/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b The cause of this issue is that when tipc_nl_bearer_add() is called with the TIPC_NLA_BEARER_UDP_OPTS attribute, tipc_udp_nl_bearer_add() is called even if the bearer is not UDP. tipc_udp_is_known_peer() called by tipc_udp_nl_bearer_add() assumes that the media_ptr field of the tipc_bearer has an udp_bearer type object, so the function goes crazy for non-UDP bearers. This patch fixes the issue by checking the bearer type before calling tipc_udp_nl_bearer_add() in tipc_nl_bearer_add().
CVE-2024-26662 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix 'panel_cntl' could be null in 'dcn21_set_backlight_level()' 'panel_cntl' structure used to control the display panel could be null, dereferencing it could lead to a null pointer access. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn21/dcn21_hwseq.c:269 dcn21_set_backlight_level() error: we previously assumed 'panel_cntl' could be null (see line 250)
CVE-2024-26661 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL test for 'timing generator' in 'dcn21_set_pipe()' In "u32 otg_inst = pipe_ctx->stream_res.tg->inst;" pipe_ctx->stream_res.tg could be NULL, it is relying on the caller to ensure the tg is not NULL.
CVE-2024-26660 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Implement bounds check for stream encoder creation in DCN301 'stream_enc_regs' array is an array of dcn10_stream_enc_registers structures. The array is initialized with four elements, corresponding to the four calls to stream_enc_regs() in the array initializer. This means that valid indices for this array are 0, 1, 2, and 3. The error message 'stream_enc_regs' 4 <= 5 below, is indicating that there is an attempt to access this array with an index of 5, which is out of bounds. This could lead to undefined behavior Here, eng_id is used as an index to access the stream_enc_regs array. If eng_id is 5, this would result in an out-of-bounds access on the stream_enc_regs array. Thus fixing Buffer overflow error in dcn301_stream_encoder_create reported by Smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn301/dcn301_resource.c:1011 dcn301_stream_encoder_create() error: buffer overflow 'stream_enc_regs' 4 <= 5
CVE-2024-26659 In the Linux kernel, the following vulnerability has been resolved: xhci: handle isoc Babble and Buffer Overrun events properly xHCI 4.9 explicitly forbids assuming that the xHC has released its ownership of a multi-TRB TD when it reports an error on one of the early TRBs. Yet the driver makes such assumption and releases the TD, allowing the remaining TRBs to be freed or overwritten by new TDs. The xHC should also report completion of the final TRB due to its IOC flag being set by us, regardless of prior errors. This event cannot be recognized if the TD has already been freed earlier, resulting in "Transfer event TRB DMA ptr not part of current TD" error message. Fix this by reusing the logic for processing isoc Transaction Errors. This also handles hosts which fail to report the final completion. Fix transfer length reporting on Babble errors. They may be caused by device malfunction, no guarantee that the buffer has been filled.
CVE-2024-26658 In the Linux kernel, the following vulnerability has been resolved: bcachefs: grab s_umount only if snapshotting When I was testing mongodb over bcachefs with compression, there is a lockdep warning when snapshotting mongodb data volume. $ cat test.sh prog=bcachefs $prog subvolume create /mnt/data $prog subvolume create /mnt/data/snapshots while true;do $prog subvolume snapshot /mnt/data /mnt/data/snapshots/$(date +%s) sleep 1s done $ cat /etc/mongodb.conf systemLog: destination: file logAppend: true path: /mnt/data/mongod.log storage: dbPath: /mnt/data/ lockdep reports: [ 3437.452330] ====================================================== [ 3437.452750] WARNING: possible circular locking dependency detected [ 3437.453168] 6.7.0-rc7-custom+ #85 Tainted: G E [ 3437.453562] ------------------------------------------------------ [ 3437.453981] bcachefs/35533 is trying to acquire lock: [ 3437.454325] ffffa0a02b2b1418 (sb_writers#10){.+.+}-{0:0}, at: filename_create+0x62/0x190 [ 3437.454875] but task is already holding lock: [ 3437.455268] ffffa0a02b2b10e0 (&type->s_umount_key#48){.+.+}-{3:3}, at: bch2_fs_file_ioctl+0x232/0xc90 [bcachefs] [ 3437.456009] which lock already depends on the new lock. [ 3437.456553] the existing dependency chain (in reverse order) is: [ 3437.457054] -> #3 (&type->s_umount_key#48){.+.+}-{3:3}: [ 3437.457507] down_read+0x3e/0x170 [ 3437.457772] bch2_fs_file_ioctl+0x232/0xc90 [bcachefs] [ 3437.458206] __x64_sys_ioctl+0x93/0xd0 [ 3437.458498] do_syscall_64+0x42/0xf0 [ 3437.458779] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 3437.459155] -> #2 (&c->snapshot_create_lock){++++}-{3:3}: [ 3437.459615] down_read+0x3e/0x170 [ 3437.459878] bch2_truncate+0x82/0x110 [bcachefs] [ 3437.460276] bchfs_truncate+0x254/0x3c0 [bcachefs] [ 3437.460686] notify_change+0x1f1/0x4a0 [ 3437.461283] do_truncate+0x7f/0xd0 [ 3437.461555] path_openat+0xa57/0xce0 [ 3437.461836] do_filp_open+0xb4/0x160 [ 3437.462116] do_sys_openat2+0x91/0xc0 [ 3437.462402] __x64_sys_openat+0x53/0xa0 [ 3437.462701] do_syscall_64+0x42/0xf0 [ 3437.462982] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 3437.463359] -> #1 (&sb->s_type->i_mutex_key#15){+.+.}-{3:3}: [ 3437.463843] down_write+0x3b/0xc0 [ 3437.464223] bch2_write_iter+0x5b/0xcc0 [bcachefs] [ 3437.464493] vfs_write+0x21b/0x4c0 [ 3437.464653] ksys_write+0x69/0xf0 [ 3437.464839] do_syscall_64+0x42/0xf0 [ 3437.465009] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 3437.465231] -> #0 (sb_writers#10){.+.+}-{0:0}: [ 3437.465471] __lock_acquire+0x1455/0x21b0 [ 3437.465656] lock_acquire+0xc6/0x2b0 [ 3437.465822] mnt_want_write+0x46/0x1a0 [ 3437.465996] filename_create+0x62/0x190 [ 3437.466175] user_path_create+0x2d/0x50 [ 3437.466352] bch2_fs_file_ioctl+0x2ec/0xc90 [bcachefs] [ 3437.466617] __x64_sys_ioctl+0x93/0xd0 [ 3437.466791] do_syscall_64+0x42/0xf0 [ 3437.466957] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 3437.467180] other info that might help us debug this: [ 3437.469670] 2 locks held by bcachefs/35533: other info that might help us debug this: [ 3437.467507] Chain exists of: sb_writers#10 --> &c->snapshot_create_lock --> &type->s_umount_key#48 [ 3437.467979] Possible unsafe locking scenario: [ 3437.468223] CPU0 CPU1 [ 3437.468405] ---- ---- [ 3437.468585] rlock(&type->s_umount_key#48); [ 3437.468758] lock(&c->snapshot_create_lock); [ 3437.469030] lock(&type->s_umount_key#48); [ 3437.469291] rlock(sb_writers#10); [ 3437.469434] *** DEADLOCK *** [ 3437.469 ---truncated---
CVE-2024-26657 In the Linux kernel, the following vulnerability has been resolved: drm/sched: fix null-ptr-deref in init entity The bug can be triggered by sending an amdgpu_cs_wait_ioctl to the AMDGPU DRM driver on any ASICs with valid context. The bug was reported by Joonkyo Jung <joonkyoj@yonsei.ac.kr>. For example the following code: static void Syzkaller2(int fd) { union drm_amdgpu_ctx arg1; union drm_amdgpu_wait_cs arg2; arg1.in.op = AMDGPU_CTX_OP_ALLOC_CTX; ret = drmIoctl(fd, 0x140106442 /* amdgpu_ctx_ioctl */, &arg1); arg2.in.handle = 0x0; arg2.in.timeout = 0x2000000000000; arg2.in.ip_type = AMD_IP_VPE /* 0x9 */; arg2->in.ip_instance = 0x0; arg2.in.ring = 0x0; arg2.in.ctx_id = arg1.out.alloc.ctx_id; drmIoctl(fd, 0xc0206449 /* AMDGPU_WAIT_CS * /, &arg2); } The ioctl AMDGPU_WAIT_CS without previously submitted job could be assumed that the error should be returned, but the following commit 1decbf6bb0b4dc56c9da6c5e57b994ebfc2be3aa modified the logic and allowed to have sched_rq equal to NULL. As a result when there is no job the ioctl AMDGPU_WAIT_CS returns success. The change fixes null-ptr-deref in init entity and the stack below demonstrates the error condition: [ +0.000007] BUG: kernel NULL pointer dereference, address: 0000000000000028 [ +0.007086] #PF: supervisor read access in kernel mode [ +0.005234] #PF: error_code(0x0000) - not-present page [ +0.005232] PGD 0 P4D 0 [ +0.002501] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI [ +0.005034] CPU: 10 PID: 9229 Comm: amd_basic Tainted: G B W L 6.7.0+ #4 [ +0.007797] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.009798] RIP: 0010:drm_sched_entity_init+0x2d3/0x420 [gpu_sched] [ +0.006426] Code: 80 00 00 00 00 00 00 00 e8 1a 81 82 e0 49 89 9c 24 c0 00 00 00 4c 89 ef e8 4a 80 82 e0 49 8b 5d 00 48 8d 7b 28 e8 3d 80 82 e0 <48> 83 7b 28 00 0f 84 28 01 00 00 4d 8d ac 24 98 00 00 00 49 8d 5c [ +0.019094] RSP: 0018:ffffc90014c1fa40 EFLAGS: 00010282 [ +0.005237] RAX: 0000000000000001 RBX: 0000000000000000 RCX: ffffffff8113f3fa [ +0.007326] RDX: fffffbfff0a7889d RSI: 0000000000000008 RDI: ffffffff853c44e0 [ +0.007264] RBP: ffffc90014c1fa80 R08: 0000000000000001 R09: fffffbfff0a7889c [ +0.007266] R10: ffffffff853c44e7 R11: 0000000000000001 R12: ffff8881a719b010 [ +0.007263] R13: ffff88810d412748 R14: 0000000000000002 R15: 0000000000000000 [ +0.007264] FS: 00007ffff7045540(0000) GS:ffff8883cc900000(0000) knlGS:0000000000000000 [ +0.008236] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.005851] CR2: 0000000000000028 CR3: 000000011912e000 CR4: 0000000000350ef0 [ +0.007175] Call Trace: [ +0.002561] <TASK> [ +0.002141] ? show_regs+0x6a/0x80 [ +0.003473] ? __die+0x25/0x70 [ +0.003124] ? page_fault_oops+0x214/0x720 [ +0.004179] ? preempt_count_sub+0x18/0xc0 [ +0.004093] ? __pfx_page_fault_oops+0x10/0x10 [ +0.004590] ? srso_return_thunk+0x5/0x5f [ +0.004000] ? vprintk_default+0x1d/0x30 [ +0.004063] ? srso_return_thunk+0x5/0x5f [ +0.004087] ? vprintk+0x5c/0x90 [ +0.003296] ? drm_sched_entity_init+0x2d3/0x420 [gpu_sched] [ +0.005807] ? srso_return_thunk+0x5/0x5f [ +0.004090] ? _printk+0xb3/0xe0 [ +0.003293] ? __pfx__printk+0x10/0x10 [ +0.003735] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20 [ +0.005482] ? do_user_addr_fault+0x345/0x770 [ +0.004361] ? exc_page_fault+0x64/0xf0 [ +0.003972] ? asm_exc_page_fault+0x27/0x30 [ +0.004271] ? add_taint+0x2a/0xa0 [ +0.003476] ? drm_sched_entity_init+0x2d3/0x420 [gpu_sched] [ +0.005812] amdgpu_ctx_get_entity+0x3f9/0x770 [amdgpu] [ +0.009530] ? finish_task_switch.isra.0+0x129/0x470 [ +0.005068] ? __pfx_amdgpu_ctx_get_entity+0x10/0x10 [amdgpu] [ +0.010063] ? __kasan_check_write+0x14/0x20 [ +0.004356] ? srso_return_thunk+0x5/0x5f [ +0.004001] ? mutex_unlock+0x81/0xd0 [ +0.003802] ? srso_return_thunk+0x5/0x5f [ +0.004096] amdgpu_cs_wait_ioctl+0xf6/0x270 [amdgpu] [ +0.009355] ? __pfx_ ---truncated---
CVE-2024-26656 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free bug The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl to the AMDGPU DRM driver on any ASICs with an invalid address and size. The bug was reported by Joonkyo Jung <joonkyoj@yonsei.ac.kr>. For example the following code: static void Syzkaller1(int fd) { struct drm_amdgpu_gem_userptr arg; int ret; arg.addr = 0xffffffffffff0000; arg.size = 0x80000000; /*2 Gb*/ arg.flags = 0x7; ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg); } Due to the address and size are not valid there is a failure in amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert-> check_shl_overflow, but we even the amdgpu_hmm_register failure we still call amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address. The following stack is below when the issue is reproduced when Kazan is enabled: [ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340 [ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80 [ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246 [ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b [ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260 [ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25 [ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00 [ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260 [ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000 [ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0 [ +0.000010] Call Trace: [ +0.000006] <TASK> [ +0.000007] ? show_regs+0x6a/0x80 [ +0.000018] ? __warn+0xa5/0x1b0 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000018] ? report_bug+0x24a/0x290 [ +0.000022] ? handle_bug+0x46/0x90 [ +0.000015] ? exc_invalid_op+0x19/0x50 [ +0.000016] ? asm_exc_invalid_op+0x1b/0x20 [ +0.000017] ? kasan_save_stack+0x26/0x50 [ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10 [ +0.000017] ? kasan_save_alloc_info+0x1e/0x30 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_kmalloc+0xb1/0xc0 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_read+0x11/0x20 [ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu] [ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu] [ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu] [ +0.004291] ? do_syscall_64+0x5f/0xe0 [ +0.000023] ? srso_return_thunk+0x5/0x5f [ +0.000017] drm_gem_object_free+0x3b/0x50 [drm] [ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu] [ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004270] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __this_cpu_preempt_check+0x13/0x20 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0 [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20 [ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm] [ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm] [ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm] [ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d ---truncated---
CVE-2024-26655 In the Linux kernel, the following vulnerability has been resolved: Fix memory leak in posix_clock_open() If the clk ops.open() function returns an error, we don't release the pccontext we allocated for this clock. Re-organize the code slightly to make it all more obvious.
CVE-2024-26654 In the Linux kernel, the following vulnerability has been resolved: ALSA: sh: aica: reorder cleanup operations to avoid UAF bugs The dreamcastcard->timer could schedule the spu_dma_work and the spu_dma_work could also arm the dreamcastcard->timer. When the snd_pcm_substream is closing, the aica_channel will be deallocated. But it could still be dereferenced in the worker thread. The reason is that del_timer() will return directly regardless of whether the timer handler is running or not and the worker could be rescheduled in the timer handler. As a result, the UAF bug will happen. The racy situation is shown below: (Thread 1) | (Thread 2) snd_aicapcm_pcm_close() | ... | run_spu_dma() //worker | mod_timer() flush_work() | del_timer() | aica_period_elapsed() //timer kfree(dreamcastcard->channel) | schedule_work() | run_spu_dma() //worker ... | dreamcastcard->channel-> //USE In order to mitigate this bug and other possible corner cases, call mod_timer() conditionally in run_spu_dma(), then implement PCM sync_stop op to cancel both the timer and worker. The sync_stop op will be called from PCM core appropriately when needed.
CVE-2024-26653 In the Linux kernel, the following vulnerability has been resolved: usb: misc: ljca: Fix double free in error handling path When auxiliary_device_add() returns error and then calls auxiliary_device_uninit(), callback function ljca_auxdev_release calls kfree(auxdev->dev.platform_data) to free the parameter data of the function ljca_new_client_device. The callers of ljca_new_client_device shouldn't call kfree() again in the error handling path to free the platform data. Fix this by cleaning up the redundant kfree() in all callers and adding kfree() the passed in platform_data on errors which happen before auxiliary_device_init() succeeds .
CVE-2024-26652 In the Linux kernel, the following vulnerability has been resolved: net: pds_core: Fix possible double free in error handling path When auxiliary_device_add() returns error and then calls auxiliary_device_uninit(), Callback function pdsc_auxbus_dev_release calls kfree(padev) to free memory. We shouldn't call kfree(padev) again in the error handling path. Fix this by cleaning up the redundant kfree() and putting the error handling back to where the errors happened.
CVE-2024-26651 In the Linux kernel, the following vulnerability has been resolved: sr9800: Add check for usbnet_get_endpoints Add check for usbnet_get_endpoints() and return the error if it fails in order to transfer the error.
CVE-2024-26649 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix the null pointer when load rlc firmware If the RLC firmware is invalid because of wrong header size, the pointer to the rlc firmware is released in function amdgpu_ucode_request. There will be a null pointer error in subsequent use. So skip validation to fix it.
CVE-2024-26648 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix variable deferencing before NULL check in edp_setup_replay() In edp_setup_replay(), 'struct dc *dc' & 'struct dmub_replay *replay' was dereferenced before the pointer 'link' & 'replay' NULL check. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/link/protocols/link_edp_panel_control.c:947 edp_setup_replay() warn: variable dereferenced before check 'link' (see line 933)
CVE-2024-26647 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix late derefrence 'dsc' check in 'link_set_dsc_pps_packet()' In link_set_dsc_pps_packet(), 'struct display_stream_compressor *dsc' was dereferenced in a DC_LOGGER_INIT(dsc->ctx->logger); before the 'dsc' NULL pointer check. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/link/link_dpms.c:905 link_set_dsc_pps_packet() warn: variable dereferenced before check 'dsc' (see line 903)
CVE-2024-26646 In the Linux kernel, the following vulnerability has been resolved: thermal: intel: hfi: Add syscore callbacks for system-wide PM The kernel allocates a memory buffer and provides its location to the hardware, which uses it to update the HFI table. This allocation occurs during boot and remains constant throughout runtime. When resuming from hibernation, the restore kernel allocates a second memory buffer and reprograms the HFI hardware with the new location as part of a normal boot. The location of the second memory buffer may differ from the one allocated by the image kernel. When the restore kernel transfers control to the image kernel, its HFI buffer becomes invalid, potentially leading to memory corruption if the hardware writes to it (the hardware continues to use the buffer from the restore kernel). It is also possible that the hardware "forgets" the address of the memory buffer when resuming from "deep" suspend. Memory corruption may also occur in such a scenario. To prevent the described memory corruption, disable HFI when preparing to suspend or hibernate. Enable it when resuming. Add syscore callbacks to handle the package of the boot CPU (packages of non-boot CPUs are handled via CPU offline). Syscore ops always run on the boot CPU. Additionally, HFI only needs to be disabled during "deep" suspend and hibernation. Syscore ops only run in these cases. [ rjw: Comment adjustment, subject and changelog edits ]
CVE-2024-26645 In the Linux kernel, the following vulnerability has been resolved: tracing: Ensure visibility when inserting an element into tracing_map Running the following two commands in parallel on a multi-processor AArch64 machine can sporadically produce an unexpected warning about duplicate histogram entries: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist sleep 0.001 done $ stress-ng --sysbadaddr $(nproc) The warning looks as follows: [ 2911.172474] ------------[ cut here ]------------ [ 2911.173111] Duplicates detected: 1 [ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408 [ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E) [ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1 [ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01 [ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018 [ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408 [ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408 [ 2911.185310] sp : ffff8000a1513900 [ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001 [ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008 [ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180 [ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff [ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8 [ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731 [ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c [ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8 [ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000 [ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480 [ 2911.194259] Call trace: [ 2911.194626] tracing_map_sort_entries+0x3e0/0x408 [ 2911.195220] hist_show+0x124/0x800 [ 2911.195692] seq_read_iter+0x1d4/0x4e8 [ 2911.196193] seq_read+0xe8/0x138 [ 2911.196638] vfs_read+0xc8/0x300 [ 2911.197078] ksys_read+0x70/0x108 [ 2911.197534] __arm64_sys_read+0x24/0x38 [ 2911.198046] invoke_syscall+0x78/0x108 [ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8 [ 2911.199157] do_el0_svc+0x28/0x40 [ 2911.199613] el0_svc+0x40/0x178 [ 2911.200048] el0t_64_sync_handler+0x13c/0x158 [ 2911.200621] el0t_64_sync+0x1a8/0x1b0 [ 2911.201115] ---[ end trace 0000000000000000 ]--- The problem appears to be caused by CPU reordering of writes issued from __tracing_map_insert(). The check for the presence of an element with a given key in this function is: val = READ_ONCE(entry->val); if (val && keys_match(key, val->key, map->key_size)) ... The write of a new entry is: elt = get_free_elt(map); memcpy(elt->key, key, map->key_size); entry->val = elt; The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;" stores may become visible in the reversed order on another CPU. This second CPU might then incorrectly determine that a new key doesn't match an already present val->key and subse ---truncated---
CVE-2024-26644 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't abort filesystem when attempting to snapshot deleted subvolume If the source file descriptor to the snapshot ioctl refers to a deleted subvolume, we get the following abort: BTRFS: Transaction aborted (error -2) WARNING: CPU: 0 PID: 833 at fs/btrfs/transaction.c:1875 create_pending_snapshot+0x1040/0x1190 [btrfs] Modules linked in: pata_acpi btrfs ata_piix libata scsi_mod virtio_net blake2b_generic xor net_failover virtio_rng failover scsi_common rng_core raid6_pq libcrc32c CPU: 0 PID: 833 Comm: t_snapshot_dele Not tainted 6.7.0-rc6 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014 RIP: 0010:create_pending_snapshot+0x1040/0x1190 [btrfs] RSP: 0018:ffffa09c01337af8 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff9982053e7c78 RCX: 0000000000000027 RDX: ffff99827dc20848 RSI: 0000000000000001 RDI: ffff99827dc20840 RBP: ffffa09c01337c00 R08: 0000000000000000 R09: ffffa09c01337998 R10: 0000000000000003 R11: ffffffffb96da248 R12: fffffffffffffffe R13: ffff99820535bb28 R14: ffff99820b7bd000 R15: ffff99820381ea80 FS: 00007fe20aadabc0(0000) GS:ffff99827dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000559a120b502f CR3: 00000000055b6000 CR4: 00000000000006f0 Call Trace: <TASK> ? create_pending_snapshot+0x1040/0x1190 [btrfs] ? __warn+0x81/0x130 ? create_pending_snapshot+0x1040/0x1190 [btrfs] ? report_bug+0x171/0x1a0 ? handle_bug+0x3a/0x70 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? create_pending_snapshot+0x1040/0x1190 [btrfs] ? create_pending_snapshot+0x1040/0x1190 [btrfs] create_pending_snapshots+0x92/0xc0 [btrfs] btrfs_commit_transaction+0x66b/0xf40 [btrfs] btrfs_mksubvol+0x301/0x4d0 [btrfs] btrfs_mksnapshot+0x80/0xb0 [btrfs] __btrfs_ioctl_snap_create+0x1c2/0x1d0 [btrfs] btrfs_ioctl_snap_create_v2+0xc4/0x150 [btrfs] btrfs_ioctl+0x8a6/0x2650 [btrfs] ? kmem_cache_free+0x22/0x340 ? do_sys_openat2+0x97/0xe0 __x64_sys_ioctl+0x97/0xd0 do_syscall_64+0x46/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7fe20abe83af RSP: 002b:00007ffe6eff1360 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fe20abe83af RDX: 00007ffe6eff23c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 0000000000000003 R08: 0000000000000000 R09: 00007fe20ad16cd0 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007ffe6eff13c0 R14: 00007fe20ad45000 R15: 0000559a120b6d58 </TASK> ---[ end trace 0000000000000000 ]--- BTRFS: error (device vdc: state A) in create_pending_snapshot:1875: errno=-2 No such entry BTRFS info (device vdc: state EA): forced readonly BTRFS warning (device vdc: state EA): Skipping commit of aborted transaction. BTRFS: error (device vdc: state EA) in cleanup_transaction:2055: errno=-2 No such entry This happens because create_pending_snapshot() initializes the new root item as a copy of the source root item. This includes the refs field, which is 0 for a deleted subvolume. The call to btrfs_insert_root() therefore inserts a root with refs == 0. btrfs_get_new_fs_root() then finds the root and returns -ENOENT if refs == 0, which causes create_pending_snapshot() to abort. Fix it by checking the source root's refs before attempting the snapshot, but after locking subvol_sem to avoid racing with deletion.
CVE-2024-26643 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: mark set as dead when unbinding anonymous set with timeout While the rhashtable set gc runs asynchronously, a race allows it to collect elements from anonymous sets with timeouts while it is being released from the commit path. Mingi Cho originally reported this issue in a different path in 6.1.x with a pipapo set with low timeouts which is not possible upstream since 7395dfacfff6 ("netfilter: nf_tables: use timestamp to check for set element timeout"). Fix this by setting on the dead flag for anonymous sets to skip async gc in this case. According to 08e4c8c5919f ("netfilter: nf_tables: mark newset as dead on transaction abort"), Florian plans to accelerate abort path by releasing objects via workqueue, therefore, this sets on the dead flag for abort path too.
CVE-2024-26642 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: disallow anonymous set with timeout flag Anonymous sets are never used with timeout from userspace, reject this. Exception to this rule is NFT_SET_EVAL to ensure legacy meters still work.
CVE-2024-26641 In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: make sure to pull inner header in __ip6_tnl_rcv() syzbot found __ip6_tnl_rcv() could access unitiliazed data [1]. Call pskb_inet_may_pull() to fix this, and initialize ipv6h variable after this call as it can change skb->head. [1] BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7df/0x1e50 include/net/inet_ecn.h:321 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP6_ECN_decapsulate+0x7df/0x1e50 include/net/inet_ecn.h:321 ip6ip6_dscp_ecn_decapsulate+0x178/0x1b0 net/ipv6/ip6_tunnel.c:727 __ip6_tnl_rcv+0xd4e/0x1590 net/ipv6/ip6_tunnel.c:845 ip6_tnl_rcv+0xce/0x100 net/ipv6/ip6_tunnel.c:888 gre_rcv+0x143f/0x1870 ip6_protocol_deliver_rcu+0xda6/0x2a60 net/ipv6/ip6_input.c:438 ip6_input_finish net/ipv6/ip6_input.c:483 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492 ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586 dst_input include/net/dst.h:461 [inline] ip6_rcv_finish+0x5db/0x870 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:314 [inline] ipv6_rcv+0xda/0x390 net/ipv6/ip6_input.c:310 __netif_receive_skb_one_core net/core/dev.c:5532 [inline] __netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5646 netif_receive_skb_internal net/core/dev.c:5732 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5791 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1555 tun_get_user+0x53af/0x66d0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2084 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0x786/0x1200 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560 __alloc_skb+0x318/0x740 net/core/skbuff.c:651 alloc_skb include/linux/skbuff.h:1286 [inline] alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334 sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2787 tun_alloc_skb drivers/net/tun.c:1531 [inline] tun_get_user+0x1e8a/0x66d0 drivers/net/tun.c:1846 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2084 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0x786/0x1200 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b CPU: 0 PID: 5034 Comm: syz-executor331 Not tainted 6.7.0-syzkaller-00562-g9f8413c4a66f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
CVE-2024-26640 In the Linux kernel, the following vulnerability has been resolved: tcp: add sanity checks to rx zerocopy TCP rx zerocopy intent is to map pages initially allocated from NIC drivers, not pages owned by a fs. This patch adds to can_map_frag() these additional checks: - Page must not be a compound one. - page->mapping must be NULL. This fixes the panic reported by ZhangPeng. syzbot was able to loopback packets built with sendfile(), mapping pages owned by an ext4 file to TCP rx zerocopy. r3 = socket$inet_tcp(0x2, 0x1, 0x0) mmap(&(0x7f0000ff9000/0x4000)=nil, 0x4000, 0x0, 0x12, r3, 0x0) r4 = socket$inet_tcp(0x2, 0x1, 0x0) bind$inet(r4, &(0x7f0000000000)={0x2, 0x4e24, @multicast1}, 0x10) connect$inet(r4, &(0x7f00000006c0)={0x2, 0x4e24, @empty}, 0x10) r5 = openat$dir(0xffffffffffffff9c, &(0x7f00000000c0)='./file0\x00', 0x181e42, 0x0) fallocate(r5, 0x0, 0x0, 0x85b8) sendfile(r4, r5, 0x0, 0x8ba0) getsockopt$inet_tcp_TCP_ZEROCOPY_RECEIVE(r4, 0x6, 0x23, &(0x7f00000001c0)={&(0x7f0000ffb000/0x3000)=nil, 0x3000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, &(0x7f0000000440)=0x40) r6 = openat$dir(0xffffffffffffff9c, &(0x7f00000000c0)='./file0\x00', 0x181e42, 0x0)
CVE-2024-26639 In the Linux kernel, the following vulnerability has been resolved: mm, kmsan: fix infinite recursion due to RCU critical section Alexander Potapenko writes in [1]: "For every memory access in the code instrumented by KMSAN we call kmsan_get_metadata() to obtain the metadata for the memory being accessed. For virtual memory the metadata pointers are stored in the corresponding `struct page`, therefore we need to call virt_to_page() to get them. According to the comment in arch/x86/include/asm/page.h, virt_to_page(kaddr) returns a valid pointer iff virt_addr_valid(kaddr) is true, so KMSAN needs to call virt_addr_valid() as well. To avoid recursion, kmsan_get_metadata() must not call instrumented code, therefore ./arch/x86/include/asm/kmsan.h forks parts of arch/x86/mm/physaddr.c to check whether a virtual address is valid or not. But the introduction of rcu_read_lock() to pfn_valid() added instrumented RCU API calls to virt_to_page_or_null(), which is called by kmsan_get_metadata(), so there is an infinite recursion now. I do not think it is correct to stop that recursion by doing kmsan_enter_runtime()/kmsan_exit_runtime() in kmsan_get_metadata(): that would prevent instrumented functions called from within the runtime from tracking the shadow values, which might introduce false positives." Fix the issue by switching pfn_valid() to the _sched() variant of rcu_read_lock/unlock(), which does not require calling into RCU. Given the critical section in pfn_valid() is very small, this is a reasonable trade-off (with preemptible RCU). KMSAN further needs to be careful to suppress calls into the scheduler, which would be another source of recursion. This can be done by wrapping the call to pfn_valid() into preempt_disable/enable_no_resched(). The downside is that this sacrifices breaking scheduling guarantees; however, a kernel compiled with KMSAN has already given up any performance guarantees due to being heavily instrumented. Note, KMSAN code already disables tracing via Makefile, and since mmzone.h is included, it is not necessary to use the notrace variant, which is generally preferred in all other cases.
CVE-2024-26638 In the Linux kernel, the following vulnerability has been resolved: nbd: always initialize struct msghdr completely syzbot complains that msg->msg_get_inq value can be uninitialized [1] struct msghdr got many new fields recently, we should always make sure their values is zero by default. [1] BUG: KMSAN: uninit-value in tcp_recvmsg+0x686/0xac0 net/ipv4/tcp.c:2571 tcp_recvmsg+0x686/0xac0 net/ipv4/tcp.c:2571 inet_recvmsg+0x131/0x580 net/ipv4/af_inet.c:879 sock_recvmsg_nosec net/socket.c:1044 [inline] sock_recvmsg+0x12b/0x1e0 net/socket.c:1066 __sock_xmit+0x236/0x5c0 drivers/block/nbd.c:538 nbd_read_reply drivers/block/nbd.c:732 [inline] recv_work+0x262/0x3100 drivers/block/nbd.c:863 process_one_work kernel/workqueue.c:2627 [inline] process_scheduled_works+0x104e/0x1e70 kernel/workqueue.c:2700 worker_thread+0xf45/0x1490 kernel/workqueue.c:2781 kthread+0x3ed/0x540 kernel/kthread.c:388 ret_from_fork+0x66/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242 Local variable msg created at: __sock_xmit+0x4c/0x5c0 drivers/block/nbd.c:513 nbd_read_reply drivers/block/nbd.c:732 [inline] recv_work+0x262/0x3100 drivers/block/nbd.c:863 CPU: 1 PID: 7465 Comm: kworker/u5:1 Not tainted 6.7.0-rc7-syzkaller-00041-gf016f7547aee #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 Workqueue: nbd5-recv recv_work
CVE-2024-26637 In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: rely on mac80211 debugfs handling for vif mac80211 started to delete debugfs entries in certain cases, causing a ath11k to crash when it tried to delete the entries later. Fix this by relying on mac80211 to delete the entries when appropriate and adding them from the vif_add_debugfs handler.
CVE-2024-26636 In the Linux kernel, the following vulnerability has been resolved: llc: make llc_ui_sendmsg() more robust against bonding changes syzbot was able to trick llc_ui_sendmsg(), allocating an skb with no headroom, but subsequently trying to push 14 bytes of Ethernet header [1] Like some others, llc_ui_sendmsg() releases the socket lock before calling sock_alloc_send_skb(). Then it acquires it again, but does not redo all the sanity checks that were performed. This fix: - Uses LL_RESERVED_SPACE() to reserve space. - Check all conditions again after socket lock is held again. - Do not account Ethernet header for mtu limitation. [1] skbuff: skb_under_panic: text:ffff800088baa334 len:1514 put:14 head:ffff0000c9c37000 data:ffff0000c9c36ff2 tail:0x5dc end:0x6c0 dev:bond0 kernel BUG at net/core/skbuff.c:193 ! Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 6875 Comm: syz-executor.0 Not tainted 6.7.0-rc8-syzkaller-00101-g0802e17d9aca-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : skb_panic net/core/skbuff.c:189 [inline] pc : skb_under_panic+0x13c/0x140 net/core/skbuff.c:203 lr : skb_panic net/core/skbuff.c:189 [inline] lr : skb_under_panic+0x13c/0x140 net/core/skbuff.c:203 sp : ffff800096f97000 x29: ffff800096f97010 x28: ffff80008cc8d668 x27: dfff800000000000 x26: ffff0000cb970c90 x25: 00000000000005dc x24: ffff0000c9c36ff2 x23: ffff0000c9c37000 x22: 00000000000005ea x21: 00000000000006c0 x20: 000000000000000e x19: ffff800088baa334 x18: 1fffe000368261ce x17: ffff80008e4ed000 x16: ffff80008a8310f8 x15: 0000000000000001 x14: 1ffff00012df2d58 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000001 x10: 0000000000ff0100 x9 : e28a51f1087e8400 x8 : e28a51f1087e8400 x7 : ffff80008028f8d0 x6 : 0000000000000000 x5 : 0000000000000001 x4 : 0000000000000001 x3 : ffff800082b78714 x2 : 0000000000000001 x1 : 0000000100000000 x0 : 0000000000000089 Call trace: skb_panic net/core/skbuff.c:189 [inline] skb_under_panic+0x13c/0x140 net/core/skbuff.c:203 skb_push+0xf0/0x108 net/core/skbuff.c:2451 eth_header+0x44/0x1f8 net/ethernet/eth.c:83 dev_hard_header include/linux/netdevice.h:3188 [inline] llc_mac_hdr_init+0x110/0x17c net/llc/llc_output.c:33 llc_sap_action_send_xid_c+0x170/0x344 net/llc/llc_s_ac.c:85 llc_exec_sap_trans_actions net/llc/llc_sap.c:153 [inline] llc_sap_next_state net/llc/llc_sap.c:182 [inline] llc_sap_state_process+0x1ec/0x774 net/llc/llc_sap.c:209 llc_build_and_send_xid_pkt+0x12c/0x1c0 net/llc/llc_sap.c:270 llc_ui_sendmsg+0x7bc/0xb1c net/llc/af_llc.c:997 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] sock_sendmsg+0x194/0x274 net/socket.c:767 splice_to_socket+0x7cc/0xd58 fs/splice.c:881 do_splice_from fs/splice.c:933 [inline] direct_splice_actor+0xe4/0x1c0 fs/splice.c:1142 splice_direct_to_actor+0x2a0/0x7e4 fs/splice.c:1088 do_splice_direct+0x20c/0x348 fs/splice.c:1194 do_sendfile+0x4bc/0xc70 fs/read_write.c:1254 __do_sys_sendfile64 fs/read_write.c:1322 [inline] __se_sys_sendfile64 fs/read_write.c:1308 [inline] __arm64_sys_sendfile64+0x160/0x3b4 fs/read_write.c:1308 __invoke_syscall arch/arm64/kernel/syscall.c:37 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:51 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:136 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:155 el0_svc+0x54/0x158 arch/arm64/kernel/entry-common.c:678 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:696 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:595 Code: aa1803e6 aa1903e7 a90023f5 94792f6a (d4210000)
CVE-2024-26635 In the Linux kernel, the following vulnerability has been resolved: llc: Drop support for ETH_P_TR_802_2. syzbot reported an uninit-value bug below. [0] llc supports ETH_P_802_2 (0x0004) and used to support ETH_P_TR_802_2 (0x0011), and syzbot abused the latter to trigger the bug. write$tun(r0, &(0x7f0000000040)={@val={0x0, 0x11}, @val, @mpls={[], @llc={@snap={0xaa, 0x1, ')', "90e5dd"}}}}, 0x16) llc_conn_handler() initialises local variables {saddr,daddr}.mac based on skb in llc_pdu_decode_sa()/llc_pdu_decode_da() and passes them to __llc_lookup(). However, the initialisation is done only when skb->protocol is htons(ETH_P_802_2), otherwise, __llc_lookup_established() and __llc_lookup_listener() will read garbage. The missing initialisation existed prior to commit 211ed865108e ("net: delete all instances of special processing for token ring"). It removed the part to kick out the token ring stuff but forgot to close the door allowing ETH_P_TR_802_2 packets to sneak into llc_rcv(). Let's remove llc_tr_packet_type and complete the deprecation. [0]: BUG: KMSAN: uninit-value in __llc_lookup_established+0xe9d/0xf90 __llc_lookup_established+0xe9d/0xf90 __llc_lookup net/llc/llc_conn.c:611 [inline] llc_conn_handler+0x4bd/0x1360 net/llc/llc_conn.c:791 llc_rcv+0xfbb/0x14a0 net/llc/llc_input.c:206 __netif_receive_skb_one_core net/core/dev.c:5527 [inline] __netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5641 netif_receive_skb_internal net/core/dev.c:5727 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5786 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1555 tun_get_user+0x53af/0x66d0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2020 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x8ef/0x1490 fs/read_write.c:584 ksys_write+0x20f/0x4c0 fs/read_write.c:637 __do_sys_write fs/read_write.c:649 [inline] __se_sys_write fs/read_write.c:646 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:646 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b Local variable daddr created at: llc_conn_handler+0x53/0x1360 net/llc/llc_conn.c:783 llc_rcv+0xfbb/0x14a0 net/llc/llc_input.c:206 CPU: 1 PID: 5004 Comm: syz-executor994 Not tainted 6.6.0-syzkaller-14500-g1c41041124bd #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
CVE-2024-26634 In the Linux kernel, the following vulnerability has been resolved: net: fix removing a namespace with conflicting altnames Mark reports a BUG() when a net namespace is removed. kernel BUG at net/core/dev.c:11520! Physical interfaces moved outside of init_net get "refunded" to init_net when that namespace disappears. The main interface name may get overwritten in the process if it would have conflicted. We need to also discard all conflicting altnames. Recent fixes addressed ensuring that altnames get moved with the main interface, which surfaced this problem.
CVE-2024-26633 In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: fix NEXTHDR_FRAGMENT handling in ip6_tnl_parse_tlv_enc_lim() syzbot pointed out [1] that NEXTHDR_FRAGMENT handling is broken. Reading frag_off can only be done if we pulled enough bytes to skb->head. Currently we might access garbage. [1] BUG: KMSAN: uninit-value in ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0 ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0 ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline] ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564 __dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592 neigh_output include/net/neighbour.h:542 [inline] ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137 ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243 dst_output include/net/dst.h:451 [inline] ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155 ip6_send_skb net/ipv6/ip6_output.c:1952 [inline] ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972 rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582 rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920 inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x490 net/socket.c:2674 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] __kmem_cache_alloc_node+0x5c9/0x970 mm/slub.c:3517 __do_kmalloc_node mm/slab_common.c:1006 [inline] __kmalloc_node_track_caller+0x118/0x3c0 mm/slab_common.c:1027 kmalloc_reserve+0x249/0x4a0 net/core/skbuff.c:582 pskb_expand_head+0x226/0x1a00 net/core/skbuff.c:2098 __pskb_pull_tail+0x13b/0x2310 net/core/skbuff.c:2655 pskb_may_pull_reason include/linux/skbuff.h:2673 [inline] pskb_may_pull include/linux/skbuff.h:2681 [inline] ip6_tnl_parse_tlv_enc_lim+0x901/0xbb0 net/ipv6/ip6_tunnel.c:408 ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline] ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564 __dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592 neigh_output include/net/neighbour.h:542 [inline] ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137 ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243 dst_output include/net/dst.h:451 [inline] ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155 ip6_send_skb net/ipv6/ip6_output.c:1952 [inline] ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972 rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582 rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920 inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendms ---truncated---
CVE-2024-26632 In the Linux kernel, the following vulnerability has been resolved: block: Fix iterating over an empty bio with bio_for_each_folio_all If the bio contains no data, bio_first_folio() calls page_folio() on a NULL pointer and oopses. Move the test that we've reached the end of the bio from bio_next_folio() to bio_first_folio(). [axboe: add unlikely() to error case]
CVE-2024-26631 In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: fix data-race in ipv6_mc_down / mld_ifc_work idev->mc_ifc_count can be written over without proper locking. Originally found by syzbot [1], fix this issue by encapsulating calls to mld_ifc_stop_work() (and mld_gq_stop_work() for good measure) with mutex_lock() and mutex_unlock() accordingly as these functions should only be called with mc_lock per their declarations. [1] BUG: KCSAN: data-race in ipv6_mc_down / mld_ifc_work write to 0xffff88813a80c832 of 1 bytes by task 3771 on cpu 0: mld_ifc_stop_work net/ipv6/mcast.c:1080 [inline] ipv6_mc_down+0x10a/0x280 net/ipv6/mcast.c:2725 addrconf_ifdown+0xe32/0xf10 net/ipv6/addrconf.c:3949 addrconf_notify+0x310/0x980 notifier_call_chain kernel/notifier.c:93 [inline] raw_notifier_call_chain+0x6b/0x1c0 kernel/notifier.c:461 __dev_notify_flags+0x205/0x3d0 dev_change_flags+0xab/0xd0 net/core/dev.c:8685 do_setlink+0x9f6/0x2430 net/core/rtnetlink.c:2916 rtnl_group_changelink net/core/rtnetlink.c:3458 [inline] __rtnl_newlink net/core/rtnetlink.c:3717 [inline] rtnl_newlink+0xbb3/0x1670 net/core/rtnetlink.c:3754 rtnetlink_rcv_msg+0x807/0x8c0 net/core/rtnetlink.c:6558 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2545 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6576 netlink_unicast_kernel net/netlink/af_netlink.c:1342 [inline] netlink_unicast+0x589/0x650 net/netlink/af_netlink.c:1368 netlink_sendmsg+0x66e/0x770 net/netlink/af_netlink.c:1910 ... write to 0xffff88813a80c832 of 1 bytes by task 22 on cpu 1: mld_ifc_work+0x54c/0x7b0 net/ipv6/mcast.c:2653 process_one_work kernel/workqueue.c:2627 [inline] process_scheduled_works+0x5b8/0xa30 kernel/workqueue.c:2700 worker_thread+0x525/0x730 kernel/workqueue.c:2781 ...
CVE-2024-26630 In the Linux kernel, the following vulnerability has been resolved: mm: cachestat: fix folio read-after-free in cache walk In cachestat, we access the folio from the page cache's xarray to compute its page offset, and check for its dirty and writeback flags. However, we do not hold a reference to the folio before performing these actions, which means the folio can concurrently be released and reused as another folio/page/slab. Get around this altogether by just using xarray's existing machinery for the folio page offsets and dirty/writeback states. This changes behavior for tmpfs files to now always report zeroes in their dirty and writeback counters. This is okay as tmpfs doesn't follow conventional writeback cache behavior: its pages get "cleaned" during swapout, after which they're no longer resident etc.
CVE-2024-26629 In the Linux kernel, the following vulnerability has been resolved: nfsd: fix RELEASE_LOCKOWNER The test on so_count in nfsd4_release_lockowner() is nonsense and harmful. Revert to using check_for_locks(), changing that to not sleep. First: harmful. As is documented in the kdoc comment for nfsd4_release_lockowner(), the test on so_count can transiently return a false positive resulting in a return of NFS4ERR_LOCKS_HELD when in fact no locks are held. This is clearly a protocol violation and with the Linux NFS client it can cause incorrect behaviour. If RELEASE_LOCKOWNER is sent while some other thread is still processing a LOCK request which failed because, at the time that request was received, the given owner held a conflicting lock, then the nfsd thread processing that LOCK request can hold a reference (conflock) to the lock owner that causes nfsd4_release_lockowner() to return an incorrect error. The Linux NFS client ignores that NFS4ERR_LOCKS_HELD error because it never sends NFS4_RELEASE_LOCKOWNER without first releasing any locks, so it knows that the error is impossible. It assumes the lock owner was in fact released so it feels free to use the same lock owner identifier in some later locking request. When it does reuse a lock owner identifier for which a previous RELEASE failed, it will naturally use a lock_seqid of zero. However the server, which didn't release the lock owner, will expect a larger lock_seqid and so will respond with NFS4ERR_BAD_SEQID. So clearly it is harmful to allow a false positive, which testing so_count allows. The test is nonsense because ... well... it doesn't mean anything. so_count is the sum of three different counts. 1/ the set of states listed on so_stateids 2/ the set of active vfs locks owned by any of those states 3/ various transient counts such as for conflicting locks. When it is tested against '2' it is clear that one of these is the transient reference obtained by find_lockowner_str_locked(). It is not clear what the other one is expected to be. In practice, the count is often 2 because there is precisely one state on so_stateids. If there were more, this would fail. In my testing I see two circumstances when RELEASE_LOCKOWNER is called. In one case, CLOSE is called before RELEASE_LOCKOWNER. That results in all the lock states being removed, and so the lockowner being discarded (it is removed when there are no more references which usually happens when the lock state is discarded). When nfsd4_release_lockowner() finds that the lock owner doesn't exist, it returns success. The other case shows an so_count of '2' and precisely one state listed in so_stateid. It appears that the Linux client uses a separate lock owner for each file resulting in one lock state per lock owner, so this test on '2' is safe. For another client it might not be safe. So this patch changes check_for_locks() to use the (newish) find_any_file_locked() so that it doesn't take a reference on the nfs4_file and so never calls nfsd_file_put(), and so never sleeps. With this check is it safe to restore the use of check_for_locks() rather than testing so_count against the mysterious '2'.
CVE-2024-26627 In the Linux kernel, the following vulnerability has been resolved: scsi: core: Move scsi_host_busy() out of host lock for waking up EH handler Inside scsi_eh_wakeup(), scsi_host_busy() is called & checked with host lock every time for deciding if error handler kthread needs to be waken up. This can be too heavy in case of recovery, such as: - N hardware queues - queue depth is M for each hardware queue - each scsi_host_busy() iterates over (N * M) tag/requests If recovery is triggered in case that all requests are in-flight, each scsi_eh_wakeup() is strictly serialized, when scsi_eh_wakeup() is called for the last in-flight request, scsi_host_busy() has been run for (N * M - 1) times, and request has been iterated for (N*M - 1) * (N * M) times. If both N and M are big enough, hard lockup can be triggered on acquiring host lock, and it is observed on mpi3mr(128 hw queues, queue depth 8169). Fix the issue by calling scsi_host_busy() outside the host lock. We don't need the host lock for getting busy count because host the lock never covers that. [mkp: Drop unnecessary 'busy' variables pointed out by Bart]
CVE-2024-26626 In the Linux kernel, the following vulnerability has been resolved: ipmr: fix kernel panic when forwarding mcast packets The stacktrace was: [ 86.305548] BUG: kernel NULL pointer dereference, address: 0000000000