Search Results

There are 64 CVE Records that match your search.
Name Description
CVE-2025-37864 In the Linux kernel, the following vulnerability has been resolved: net: dsa: clean up FDB, MDB, VLAN entries on unbind As explained in many places such as commit b117e1e8a86d ("net: dsa: delete dsa_legacy_fdb_add and dsa_legacy_fdb_del"), DSA is written given the assumption that higher layers have balanced additions/deletions. As such, it only makes sense to be extremely vocal when those assumptions are violated and the driver unbinds with entries still present. But Ido Schimmel points out a very simple situation where that is wrong: https://lore.kernel.org/netdev/ZDazSM5UsPPjQuKr@shredder/ (also briefly discussed by me in the aforementioned commit). Basically, while the bridge bypass operations are not something that DSA explicitly documents, and for the majority of DSA drivers this API simply causes them to go to promiscuous mode, that isn't the case for all drivers. Some have the necessary requirements for bridge bypass operations to do something useful - see dsa_switch_supports_uc_filtering(). Although in tools/testing/selftests/net/forwarding/local_termination.sh, we made an effort to popularize better mechanisms to manage address filters on DSA interfaces from user space - namely macvlan for unicast, and setsockopt(IP_ADD_MEMBERSHIP) - through mtools - for multicast, the fact is that 'bridge fdb add ... self static local' also exists as kernel UAPI, and might be useful to someone, even if only for a quick hack. It seems counter-productive to block that path by implementing shim .ndo_fdb_add and .ndo_fdb_del operations which just return -EOPNOTSUPP in order to prevent the ndo_dflt_fdb_add() and ndo_dflt_fdb_del() from running, although we could do that. Accepting that cleanup is necessary seems to be the only option. Especially since we appear to be coming back at this from a different angle as well. Russell King is noticing that the WARN_ON() triggers even for VLANs: https://lore.kernel.org/netdev/Z_li8Bj8bD4-BYKQ@shell.armlinux.org.uk/ What happens in the bug report above is that dsa_port_do_vlan_del() fails, then the VLAN entry lingers on, and then we warn on unbind and leak it. This is not a straight revert of the blamed commit, but we now add an informational print to the kernel log (to still have a way to see that bugs exist), and some extra comments gathered from past years' experience, to justify the logic.
CVE-2025-27091 OpenH264 is a free license codec library which supports H.264 encoding and decoding. A vulnerability in the decoding functions of OpenH264 codec library could allow a remote, unauthenticated attacker to trigger a heap overflow. This vulnerability is due to a race condition between a Sequence Parameter Set (SPS) memory allocation and a subsequent non Instantaneous Decoder Refresh (non-IDR) Network Abstraction Layer (NAL) unit memory usage. An attacker could exploit this vulnerability by crafting a malicious bitstream and tricking a victim user into processing an arbitrary video containing the malicious bistream. An exploit could allow the attacker to cause an unexpected crash in the victim's user decoding client and, possibly, perform arbitrary commands on the victim's host by abusing the heap overflow. This vulnerability affects OpenH264 2.5.0 and earlier releases. Both Scalable Video Coding (SVC) mode and Advanced Video Coding (AVC) mode are affected by this vulnerability. OpenH264 software releases 2.6.0 and later contained the fix for this vulnerability. Users are advised to upgrade. There are no known workarounds for this vulnerability. ### For more information If you have any questions or comments about this advisory: * [Open an issue in cisco/openh264](https://github.com/cisco/openh264/issues) * Email Cisco Open Source Security ([oss-security@cisco.com](mailto:oss-security@cisco.com)) and Cisco PSIRT ([psirt@cisco.com](mailto:psirt@cisco.com)) ### Credits: * **Research:** Octavian Guzu and Andrew Calvano of Meta * **Fix ideation:** Philipp Hancke and Shyam Sadhwani of Meta * **Fix implementation:** Benzheng Zhang (@BenzhengZhang) * **Release engineering:** Benzheng Zhang (@BenzhengZhang)
CVE-2025-21916 In the Linux kernel, the following vulnerability has been resolved: usb: atm: cxacru: fix a flaw in existing endpoint checks Syzbot once again identified a flaw in usb endpoint checking, see [1]. This time the issue stems from a commit authored by me (2eabb655a968 ("usb: atm: cxacru: fix endpoint checking in cxacru_bind()")). While using usb_find_common_endpoints() may usually be enough to discard devices with wrong endpoints, in this case one needs more than just finding and identifying the sufficient number of endpoints of correct types - one needs to check the endpoint's address as well. Since cxacru_bind() fills URBs with CXACRU_EP_CMD address in mind, switch the endpoint verification approach to usb_check_XXX_endpoints() instead to fix incomplete ep testing. [1] Syzbot report: usb 5-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 0 PID: 1378 at drivers/usb/core/urb.c:504 usb_submit_urb+0xc4e/0x18c0 drivers/usb/core/urb.c:503 ... RIP: 0010:usb_submit_urb+0xc4e/0x18c0 drivers/usb/core/urb.c:503 ... Call Trace: <TASK> cxacru_cm+0x3c8/0xe50 drivers/usb/atm/cxacru.c:649 cxacru_card_status drivers/usb/atm/cxacru.c:760 [inline] cxacru_bind+0xcf9/0x1150 drivers/usb/atm/cxacru.c:1223 usbatm_usb_probe+0x314/0x1d30 drivers/usb/atm/usbatm.c:1058 cxacru_usb_probe+0x184/0x220 drivers/usb/atm/cxacru.c:1377 usb_probe_interface+0x641/0xbb0 drivers/usb/core/driver.c:396 really_probe+0x2b9/0xad0 drivers/base/dd.c:658 __driver_probe_device+0x1a2/0x390 drivers/base/dd.c:800 driver_probe_device+0x50/0x430 drivers/base/dd.c:830 ...
CVE-2024-9579 A potential vulnerability was discovered in certain Poly video conferencing devices. The firmware flaw does not properly sanitize user input. The exploitation of this vulnerability is dependent on a layered attack and cannot be exploited by itself.
CVE-2024-52797 Opencast is free and open source software for automated video capture and distribution. First noticed in Opencast 13 and 14, Opencast's Elasticsearch integration may generate syntactically invalid Elasticsearch queries in relation to previously acceptable search queries. From Opencast version 11.4 and newer, Elasticsearch queries are retried a configurable number of times in the case of error to handle temporary losses of connection to Elasticsearch. These invalid queries would fail, causing the retry mechanism to begin requerying with the same syntactically invalid query immediately, in an infinite loop. This causes a massive increase in log size which can in some cases cause a denial of service due to disk exhaustion. Opencast 13.10 and Opencast 14.3 contain patches which address the base issue, with Opencast 16.7 containing changes which harmonize the search behaviour between the admin UI and external API. Users are strongly recommended to upgrade as soon as possible if running versions prior to 13.10 or 14.3. While the relevant endpoints require (by default) `ROLE_ADMIN` or `ROLE_API_SERIES_VIEW`, the problem queries are otherwise innocuous. This issue could be easily triggered by normal administrative work on an affected Opencast system. Those who run a version newer than 13.10 and 14.3 and see different results when searching in their admin UI vs your external API or LMS, may resolve the issue by upgrading to 16.7. No known workarounds for the vulnerability are available.
CVE-2024-48924 ### Impact When this library is used to deserialize messagepack data from an untrusted source, there is a risk of a denial of service attack by an attacker that sends data contrived to produce hash collisions, leading to large CPU consumption disproportionate to the size of the data being deserialized. This is similar to [a prior advisory](https://github.com/MessagePack-CSharp/MessagePack-CSharp/security/advisories/GHSA-7q36-4xx7-xcxf), which provided an inadequate fix for the hash collision part of the vulnerability. ### Patches The following steps are required to mitigate this risk. 1. Upgrade to a version of the library where a fix is available. 1. Review the steps in [this previous advisory](https://github.com/MessagePack-CSharp/MessagePack-CSharp/security/advisories/GHSA-7q36-4xx7-xcxf) to ensure you have your application configured for untrusted data. ### Workarounds If upgrading MessagePack to a patched version is not an option for you, you may apply a manual workaround as follows: 1. Declare a class that derives from `MessagePackSecurity`. 2. Override the `GetHashCollisionResistantEqualityComparer<T>` method to provide a collision-resistant hash function of your own and avoid calling `base.GetHashCollisionResistantEqualityComparer<T>()`. 3. Configure a `MessagePackSerializerOptions` with an instance of your derived type by calling `WithSecurity` on an existing options object. 4. Use your custom options object for all deserialization operations. This may be by setting the `MessagePackSerializer.DefaultOptions` static property, if you call methods that rely on this default property, and/or by passing in the options object explicitly to any `Deserialize` method. ### References - Learn more about best security practices when reading untrusted data with [MessagePack 1.x](https://github.com/MessagePack-CSharp/MessagePack-CSharp/tree/v1.x#security) or [MessagePack 2.x](https://github.com/MessagePack-CSharp/MessagePack-CSharp#security). - The .NET team's [discussion on hash collision vulnerabilities of their `HashCode` struct](https://github.com/GrabYourPitchforks/runtime/blob/threat_models/docs/design/security/System.HashCode.md). ### For more information If you have any questions or comments about this advisory: * [Start a public discussion](https://github.com/MessagePack-CSharp/MessagePack-CSharp/discussions) * [Email us privately](mailto:andrewarnott@live.com)
CVE-2024-47912 A vulnerability in the AWV (Audio, Web, and Video) Conferencing component of Mitel MiCollab through 9.8 SP1 FP2 (9.8.1.201) could allow an unauthenticated attacker to perform unauthorized data-access attacks due to missing authentication mechanisms. A successful exploit could allow an attacker to access and delete sensitive information.
CVE-2024-47224 A vulnerability in the AWV (Audio, Web and Video Conferencing) component of Mitel MiCollab through 9.8 SP1 FP2 (9.8.1.201) could allow an unauthenticated attacker to conduct a CRLF injection attack due to inadequate encoding of user input in URLs. A successful exploit could allow an attacker to perform a phishing attack.
CVE-2024-47223 A vulnerability in the AWV (Audio, Web and Video Conferencing) component of Mitel MiCollab through 9.8 SP1 FP2 (9.8.1.201) could allow an unauthenticated attacker to conduct a SQL injection attack due to insufficient sanitization of user input. A successful exploit could allow an attacker to access non-sensitive user provisioning information and execute arbitrary SQL database commands.
CVE-2024-47189 The API Interface of the AWV (Audio, Web and Video Conferencing) component of Mitel MiCollab through 9.8 SP1 FP2 (9.8.1.201) could allow an unauthenticated attacker to conduct SQL injection due to insufficient sanitization of user input. A successful exploit could allow an attacker with knowledge of specific details to access non-sensitive user provisioning information and execute arbitrary SQL database commands.
CVE-2024-40927 In the Linux kernel, the following vulnerability has been resolved: xhci: Handle TD clearing for multiple streams case When multiple streams are in use, multiple TDs might be in flight when an endpoint is stopped. We need to issue a Set TR Dequeue Pointer for each, to ensure everything is reset properly and the caches cleared. Change the logic so that any N>1 TDs found active for different streams are deferred until after the first one is processed, calling xhci_invalidate_cancelled_tds() again from xhci_handle_cmd_set_deq() to queue another command until we are done with all of them. Also change the error/"should never happen" paths to ensure we at least clear any affected TDs, even if we can't issue a command to clear the hardware cache, and complain loudly with an xhci_warn() if this ever happens. This problem case dates back to commit e9df17eb1408 ("USB: xhci: Correct assumptions about number of rings per endpoint.") early on in the XHCI driver's life, when stream support was first added. It was then identified but not fixed nor made into a warning in commit 674f8438c121 ("xhci: split handling halted endpoints into two steps"), which added a FIXME comment for the problem case (without materially changing the behavior as far as I can tell, though the new logic made the problem more obvious). Then later, in commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs."), it was acknowledged again. [Mathias: commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs.") was a targeted regression fix to the previously mentioned patch. Users reported issues with usb stuck after unmounting/disconnecting UAS devices. This rolled back the TD clearing of multiple streams to its original state.] Apparently the commit author was aware of the problem (yet still chose to submit it): It was still mentioned as a FIXME, an xhci_dbg() was added to log the problem condition, and the remaining issue was mentioned in the commit description. The choice of making the log type xhci_dbg() for what is, at this point, a completely unhandled and known broken condition is puzzling and unfortunate, as it guarantees that no actual users would see the log in production, thereby making it nigh undebuggable (indeed, even if you turn on DEBUG, the message doesn't really hint at there being a problem at all). It took me *months* of random xHC crashes to finally find a reliable repro and be able to do a deep dive debug session, which could all have been avoided had this unhandled, broken condition been actually reported with a warning, as it should have been as a bug intentionally left in unfixed (never mind that it shouldn't have been left in at all). > Another fix to solve clearing the caches of all stream rings with > cancelled TDs is needed, but not as urgent. 3 years after that statement and 14 years after the original bug was introduced, I think it's finally time to fix it. And maybe next time let's not leave bugs unfixed (that are actually worse than the original bug), and let's actually get people to review kernel commits please. Fixes xHC crashes and IOMMU faults with UAS devices when handling errors/faults. Easiest repro is to use `hdparm` to mark an early sector (e.g. 1024) on a disk as bad, then `cat /dev/sdX > /dev/null` in a loop. At least in the case of JMicron controllers, the read errors end up having to cancel two TDs (for two queued requests to different streams) and the one that didn't get cleared properly ends up faulting the xHC entirely when it tries to access DMA pages that have since been unmapped, referred to by the stale TDs. This normally happens quickly (after two or three loops). After this fix, I left the `cat` in a loop running overnight and experienced no xHC failures, with all read errors recovered properly. Repro'd and tested on an Apple M1 Mac Mini (dwc3 host). On systems without an IOMMU, this bug would instead silently corrupt freed memory, making this a ---truncated---
CVE-2024-40918 In the Linux kernel, the following vulnerability has been resolved: parisc: Try to fix random segmentation faults in package builds PA-RISC systems with PA8800 and PA8900 processors have had problems with random segmentation faults for many years. Systems with earlier processors are much more stable. Systems with PA8800 and PA8900 processors have a large L2 cache which needs per page flushing for decent performance when a large range is flushed. The combined cache in these systems is also more sensitive to non-equivalent aliases than the caches in earlier systems. The majority of random segmentation faults that I have looked at appear to be memory corruption in memory allocated using mmap and malloc. My first attempt at fixing the random faults didn't work. On reviewing the cache code, I realized that there were two issues which the existing code didn't handle correctly. Both relate to cache move-in. Another issue is that the present bit in PTEs is racy. 1) PA-RISC caches have a mind of their own and they can speculatively load data and instructions for a page as long as there is a entry in the TLB for the page which allows move-in. TLBs are local to each CPU. Thus, the TLB entry for a page must be purged before flushing the page. This is particularly important on SMP systems. In some of the flush routines, the flush routine would be called and then the TLB entry would be purged. This was because the flush routine needed the TLB entry to do the flush. 2) My initial approach to trying the fix the random faults was to try and use flush_cache_page_if_present for all flush operations. This actually made things worse and led to a couple of hardware lockups. It finally dawned on me that some lines weren't being flushed because the pte check code was racy. This resulted in random inequivalent mappings to physical pages. The __flush_cache_page tmpalias flush sets up its own TLB entry and it doesn't need the existing TLB entry. As long as we can find the pte pointer for the vm page, we can get the pfn and physical address of the page. We can also purge the TLB entry for the page before doing the flush. Further, __flush_cache_page uses a special TLB entry that inhibits cache move-in. When switching page mappings, we need to ensure that lines are removed from the cache. It is not sufficient to just flush the lines to memory as they may come back. This made it clear that we needed to implement all the required flush operations using tmpalias routines. This includes flushes for user and kernel pages. After modifying the code to use tmpalias flushes, it became clear that the random segmentation faults were not fully resolved. The frequency of faults was worse on systems with a 64 MB L2 (PA8900) and systems with more CPUs (rp4440). The warning that I added to flush_cache_page_if_present to detect pages that couldn't be flushed triggered frequently on some systems. Helge and I looked at the pages that couldn't be flushed and found that the PTE was either cleared or for a swap page. Ignoring pages that were swapped out seemed okay but pages with cleared PTEs seemed problematic. I looked at routines related to pte_clear and noticed ptep_clear_flush. The default implementation just flushes the TLB entry. However, it was obvious that on parisc we need to flush the cache page as well. If we don't flush the cache page, stale lines will be left in the cache and cause random corruption. Once a PTE is cleared, there is no way to find the physical address associated with the PTE and flush the associated page at a later time. I implemented an updated change with a parisc specific version of ptep_clear_flush. It fixed the random data corruption on Helge's rp4440 and rp3440, as well as on my c8000. At this point, I realized that I could restore the code where we only flush in flush_cache_page_if_present if the page has been accessed. However, for this, we also need to flush the cache when the accessed bit is cleared in ---truncated---
CVE-2024-37164 Computer Vision Annotation Tool (CVAT) is an interactive video and image annotation tool for computer vision. CVAT allows users to supply custom endpoint URLs for cloud storages based on Amazon S3 and Azure Blob Storage. Starting in version 2.1.0 and prior to version 2.14.3, an attacker with a CVAT account can exploit this feature by specifying URLs whose host part is an intranet IP address or an internal domain name. By doing this, the attacker may be able to probe the network that the CVAT backend runs in for HTTP(S) servers. In addition, if there is a web server on this network that is sufficiently API-compatible with an Amazon S3 or Azure Blob Storage endpoint, and either allows anonymous access, or allows authentication with credentials that are known by the attacker, then the attacker may be able to create a cloud storage linked to this server. They may then be able to list files on the server; extract files from the server, if these files are of a type that CVAT supports reading from cloud storage (media data (such as images/videos/archives), importable annotations or datasets, task/project backups); and/or overwrite files on this server with exported annotations/datasets/backups. The exact capabilities of the attacker will depend on how the internal server is configured. Users should upgrade to CVAT 2.14.3 to receive a patch. In this release, the existing SSRF mitigation measures are applied to requests to cloud providers, with access to intranet IP addresses prohibited by default. Some workarounds are also available. One may use network security solutions such as virtual networks or firewalls to prohibit network access from the CVAT backend to unrelated servers on your internal network and/or require authentication for access to internal servers.
CVE-2024-36004 In the Linux kernel, the following vulnerability has been resolved: i40e: Do not use WQ_MEM_RECLAIM flag for workqueue Issue reported by customer during SRIOV testing, call trace: When both i40e and the i40iw driver are loaded, a warning in check_flush_dependency is being triggered. This seems to be because of the i40e driver workqueue is allocated with the WQ_MEM_RECLAIM flag, and the i40iw one is not. Similar error was encountered on ice too and it was fixed by removing the flag. Do the same for i40e too. [Feb 9 09:08] ------------[ cut here ]------------ [ +0.000004] workqueue: WQ_MEM_RECLAIM i40e:i40e_service_task [i40e] is flushing !WQ_MEM_RECLAIM infiniband:0x0 [ +0.000060] WARNING: CPU: 0 PID: 937 at kernel/workqueue.c:2966 check_flush_dependency+0x10b/0x120 [ +0.000007] Modules linked in: snd_seq_dummy snd_hrtimer snd_seq snd_timer snd_seq_device snd soundcore nls_utf8 cifs cifs_arc4 nls_ucs2_utils rdma_cm iw_cm ib_cm cifs_md4 dns_resolver netfs qrtr rfkill sunrpc vfat fat intel_rapl_msr intel_rapl_common irdma intel_uncore_frequency intel_uncore_frequency_common ice ipmi_ssif isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp gnss coretemp ib_uverbs rapl intel_cstate ib_core iTCO_wdt iTCO_vendor_support acpi_ipmi mei_me ipmi_si intel_uncore ioatdma i2c_i801 joydev pcspkr mei ipmi_devintf lpc_ich intel_pch_thermal i2c_smbus ipmi_msghandler acpi_power_meter acpi_pad xfs libcrc32c ast sd_mod drm_shmem_helper t10_pi drm_kms_helper sg ixgbe drm i40e ahci crct10dif_pclmul libahci crc32_pclmul igb crc32c_intel libata ghash_clmulni_intel i2c_algo_bit mdio dca wmi dm_mirror dm_region_hash dm_log dm_mod fuse [ +0.000050] CPU: 0 PID: 937 Comm: kworker/0:3 Kdump: loaded Not tainted 6.8.0-rc2-Feb-net_dev-Qiueue-00279-gbd43c5687e05 #1 [ +0.000003] Hardware name: Intel Corporation S2600BPB/S2600BPB, BIOS SE5C620.86B.02.01.0013.121520200651 12/15/2020 [ +0.000001] Workqueue: i40e i40e_service_task [i40e] [ +0.000024] RIP: 0010:check_flush_dependency+0x10b/0x120 [ +0.000003] Code: ff 49 8b 54 24 18 48 8d 8b b0 00 00 00 49 89 e8 48 81 c6 b0 00 00 00 48 c7 c7 b0 97 fa 9f c6 05 8a cc 1f 02 01 e8 35 b3 fd ff <0f> 0b e9 10 ff ff ff 80 3d 78 cc 1f 02 00 75 94 e9 46 ff ff ff 90 [ +0.000002] RSP: 0018:ffffbd294976bcf8 EFLAGS: 00010282 [ +0.000002] RAX: 0000000000000000 RBX: ffff94d4c483c000 RCX: 0000000000000027 [ +0.000001] RDX: ffff94d47f620bc8 RSI: 0000000000000001 RDI: ffff94d47f620bc0 [ +0.000001] RBP: 0000000000000000 R08: 0000000000000000 R09: 00000000ffff7fff [ +0.000001] R10: ffffbd294976bb98 R11: ffffffffa0be65e8 R12: ffff94c5451ea180 [ +0.000001] R13: ffff94c5ab5e8000 R14: ffff94c5c20b6e05 R15: ffff94c5f1330ab0 [ +0.000001] FS: 0000000000000000(0000) GS:ffff94d47f600000(0000) knlGS:0000000000000000 [ +0.000002] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000001] CR2: 00007f9e6f1fca70 CR3: 0000000038e20004 CR4: 00000000007706f0 [ +0.000000] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ +0.000001] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ +0.000001] PKRU: 55555554 [ +0.000001] Call Trace: [ +0.000001] <TASK> [ +0.000002] ? __warn+0x80/0x130 [ +0.000003] ? check_flush_dependency+0x10b/0x120 [ +0.000002] ? report_bug+0x195/0x1a0 [ +0.000005] ? handle_bug+0x3c/0x70 [ +0.000003] ? exc_invalid_op+0x14/0x70 [ +0.000002] ? asm_exc_invalid_op+0x16/0x20 [ +0.000006] ? check_flush_dependency+0x10b/0x120 [ +0.000002] ? check_flush_dependency+0x10b/0x120 [ +0.000002] __flush_workqueue+0x126/0x3f0 [ +0.000015] ib_cache_cleanup_one+0x1c/0xe0 [ib_core] [ +0.000056] __ib_unregister_device+0x6a/0xb0 [ib_core] [ +0.000023] ib_unregister_device_and_put+0x34/0x50 [ib_core] [ +0.000020] i40iw_close+0x4b/0x90 [irdma] [ +0.000022] i40e_notify_client_of_netdev_close+0x54/0xc0 [i40e] [ +0.000035] i40e_service_task+0x126/0x190 [i40e] [ +0.000024] process_one_work+0x174/0x340 [ +0.000003] worker_th ---truncated---
CVE-2024-33584 URL Redirection to Untrusted Site ('Open Redirect') vulnerability in Deepen Bajracharya Video Conferencing with Zoom.This issue affects Video Conferencing with Zoom: from n/a through 4.4.4.
CVE-2024-28193 your_spotify is an open source, self hosted Spotify tracking dashboard. YourSpotify version <1.8.0 allows users to create a public token in the settings, which can be used to provide guest-level access to the information of that specific user in YourSpotify. The /me API endpoint discloses Spotify API access and refresh tokens to guest users. Attackers with access to a public token for guest access to YourSpotify can therefore obtain access to Spotify API tokens of YourSpotify users. As a consequence, attackers may extract profile information, information about listening habits, playlists and other information from the corresponding Spotify profile. In addition, the attacker can pause and resume playback in the Spotify app at will. This issue has been resolved in version 1.8.0. Users are advised to upgrade. There are no known workarounds for this issue.
CVE-2024-26743 In the Linux kernel, the following vulnerability has been resolved: RDMA/qedr: Fix qedr_create_user_qp error flow Avoid the following warning by making sure to free the allocated resources in case that qedr_init_user_queue() fail. -----------[ cut here ]----------- WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3 ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt] CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1 Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022 RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 <0f> 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286 RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016 RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600 RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80 R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0 Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? ib_uverbs_close+0x1f/0xb0 [ib_uverbs] ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ? __warn+0x81/0x110 ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ? report_bug+0x10a/0x140 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ib_uverbs_close+0x1f/0xb0 [ib_uverbs] __fput+0x94/0x250 task_work_run+0x5c/0x90 do_exit+0x270/0x4a0 do_group_exit+0x2d/0x90 get_signal+0x87c/0x8c0 arch_do_signal_or_restart+0x25/0x100 ? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs] exit_to_user_mode_loop+0x9c/0x130 exit_to_user_mode_prepare+0xb6/0x100 syscall_exit_to_user_mode+0x12/0x40 do_syscall_64+0x69/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x22/0x40 ? do_syscall_64+0x69/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x22/0x40 ? do_syscall_64+0x69/0x90 ? do_syscall_64+0x69/0x90 ? common_interrupt+0x43/0xa0 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x1470abe3ec6b Code: Unable to access opcode bytes at RIP 0x1470abe3ec41. RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004 RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00 R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358 R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470 </TASK> --[ end trace 888a9b92e04c5c97 ]--
CVE-2024-26738 In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries/iommu: DLPAR add doesn't completely initialize pci_controller When a PCI device is dynamically added, the kernel oopses with a NULL pointer dereference: BUG: Kernel NULL pointer dereference on read at 0x00000030 Faulting instruction address: 0xc0000000006bbe5c Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: rpadlpar_io rpaphp rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs xsk_diag bonding nft_compat nf_tables nfnetlink rfkill binfmt_misc dm_multipath rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_core_mod ib_umad ib_iser libiscsi scsi_transport_iscsi ib_ipoib rdma_cm iw_cm ib_cm mlx5_ib ib_uverbs ib_core pseries_rng drm drm_panel_orientation_quirks xfs libcrc32c mlx5_core mlxfw sd_mod t10_pi sg tls ibmvscsi ibmveth scsi_transport_srp vmx_crypto pseries_wdt psample dm_mirror dm_region_hash dm_log dm_mod fuse CPU: 17 PID: 2685 Comm: drmgr Not tainted 6.7.0-203405+ #66 Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_008) hv:phyp pSeries NIP: c0000000006bbe5c LR: c000000000a13e68 CTR: c0000000000579f8 REGS: c00000009924f240 TRAP: 0300 Not tainted (6.7.0-203405+) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24002220 XER: 20040006 CFAR: c000000000a13e64 DAR: 0000000000000030 DSISR: 40000000 IRQMASK: 0 ... NIP sysfs_add_link_to_group+0x34/0x94 LR iommu_device_link+0x5c/0x118 Call Trace: iommu_init_device+0x26c/0x318 (unreliable) iommu_device_link+0x5c/0x118 iommu_init_device+0xa8/0x318 iommu_probe_device+0xc0/0x134 iommu_bus_notifier+0x44/0x104 notifier_call_chain+0xb8/0x19c blocking_notifier_call_chain+0x64/0x98 bus_notify+0x50/0x7c device_add+0x640/0x918 pci_device_add+0x23c/0x298 of_create_pci_dev+0x400/0x884 of_scan_pci_dev+0x124/0x1b0 __of_scan_bus+0x78/0x18c pcibios_scan_phb+0x2a4/0x3b0 init_phb_dynamic+0xb8/0x110 dlpar_add_slot+0x170/0x3b8 [rpadlpar_io] add_slot_store.part.0+0xb4/0x130 [rpadlpar_io] kobj_attr_store+0x2c/0x48 sysfs_kf_write+0x64/0x78 kernfs_fop_write_iter+0x1b0/0x290 vfs_write+0x350/0x4a0 ksys_write+0x84/0x140 system_call_exception+0x124/0x330 system_call_vectored_common+0x15c/0x2ec Commit a940904443e4 ("powerpc/iommu: Add iommu_ops to report capabilities and allow blocking domains") broke DLPAR add of PCI devices. The above added iommu_device structure to pci_controller. During system boot, PCI devices are discovered and this newly added iommu_device structure is initialized by a call to iommu_device_register(). During DLPAR add of a PCI device, a new pci_controller structure is allocated but there are no calls made to iommu_device_register() interface. Fix is to register the iommu device during DLPAR add as well.
CVE-2024-26709 In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: Fix the missing iommu_group_put() during platform domain attach The function spapr_tce_platform_iommu_attach_dev() is missing to call iommu_group_put() when the domain is already set. This refcount leak shows up with BUG_ON() during DLPAR remove operation as: KernelBug: Kernel bug in state 'None': kernel BUG at arch/powerpc/platforms/pseries/iommu.c:100! Oops: Exception in kernel mode, sig: 5 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=8192 NUMA pSeries <snip> Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_016) hv:phyp pSeries NIP: c0000000000ff4d4 LR: c0000000000ff4cc CTR: 0000000000000000 REGS: c0000013aed5f840 TRAP: 0700 Tainted: G I (6.8.0-rc3-autotest-g99bd3cb0d12e) MSR: 8000000000029033 <SF,EE,ME,IR,DR,RI,LE> CR: 44002402 XER: 20040000 CFAR: c000000000a0d170 IRQMASK: 0 ... NIP iommu_reconfig_notifier+0x94/0x200 LR iommu_reconfig_notifier+0x8c/0x200 Call Trace: iommu_reconfig_notifier+0x8c/0x200 (unreliable) notifier_call_chain+0xb8/0x19c blocking_notifier_call_chain+0x64/0x98 of_reconfig_notify+0x44/0xdc of_detach_node+0x78/0xb0 ofdt_write.part.0+0x86c/0xbb8 proc_reg_write+0xf4/0x150 vfs_write+0xf8/0x488 ksys_write+0x84/0x140 system_call_exception+0x138/0x330 system_call_vectored_common+0x15c/0x2ec The patch adds the missing iommu_group_put() call.
CVE-2024-2033 The Video Conferencing with Zoom plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 4.4.5 via the get_assign_host_id AJAX action. This makes it possible for authenticated attackers, with subscriber access or higher, to enumerate usernames, emails and IDs of all users on a site.
CVE-2024-2031 The Video Conferencing with Zoom plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'zoom_recordings_by_meeting' shortcode in all versions up to, and including, 4.4.4 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers with contributor-level and above permissions to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2023-53031 In the Linux kernel, the following vulnerability has been resolved: powerpc/imc-pmu: Fix use of mutex in IRQs disabled section Current imc-pmu code triggers a WARNING with CONFIG_DEBUG_ATOMIC_SLEEP and CONFIG_PROVE_LOCKING enabled, while running a thread_imc event. Command to trigger the warning: # perf stat -e thread_imc/CPM_CS_FROM_L4_MEM_X_DPTEG/ sleep 5 Performance counter stats for 'sleep 5': 0 thread_imc/CPM_CS_FROM_L4_MEM_X_DPTEG/ 5.002117947 seconds time elapsed 0.000131000 seconds user 0.001063000 seconds sys Below is snippet of the warning in dmesg: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 2869, name: perf-exec preempt_count: 2, expected: 0 4 locks held by perf-exec/2869: #0: c00000004325c540 (&sig->cred_guard_mutex){+.+.}-{3:3}, at: bprm_execve+0x64/0xa90 #1: c00000004325c5d8 (&sig->exec_update_lock){++++}-{3:3}, at: begin_new_exec+0x460/0xef0 #2: c0000003fa99d4e0 (&cpuctx_lock){-...}-{2:2}, at: perf_event_exec+0x290/0x510 #3: c000000017ab8418 (&ctx->lock){....}-{2:2}, at: perf_event_exec+0x29c/0x510 irq event stamp: 4806 hardirqs last enabled at (4805): [<c000000000f65b94>] _raw_spin_unlock_irqrestore+0x94/0xd0 hardirqs last disabled at (4806): [<c0000000003fae44>] perf_event_exec+0x394/0x510 softirqs last enabled at (0): [<c00000000013c404>] copy_process+0xc34/0x1ff0 softirqs last disabled at (0): [<0000000000000000>] 0x0 CPU: 36 PID: 2869 Comm: perf-exec Not tainted 6.2.0-rc2-00011-g1247637727f2 #61 Hardware name: 8375-42A POWER9 0x4e1202 opal:v7.0-16-g9b85f7d961 PowerNV Call Trace: dump_stack_lvl+0x98/0xe0 (unreliable) __might_resched+0x2f8/0x310 __mutex_lock+0x6c/0x13f0 thread_imc_event_add+0xf4/0x1b0 event_sched_in+0xe0/0x210 merge_sched_in+0x1f0/0x600 visit_groups_merge.isra.92.constprop.166+0x2bc/0x6c0 ctx_flexible_sched_in+0xcc/0x140 ctx_sched_in+0x20c/0x2a0 ctx_resched+0x104/0x1c0 perf_event_exec+0x340/0x510 begin_new_exec+0x730/0xef0 load_elf_binary+0x3f8/0x1e10 ... do not call blocking ops when !TASK_RUNNING; state=2001 set at [<00000000fd63e7cf>] do_nanosleep+0x60/0x1a0 WARNING: CPU: 36 PID: 2869 at kernel/sched/core.c:9912 __might_sleep+0x9c/0xb0 CPU: 36 PID: 2869 Comm: sleep Tainted: G W 6.2.0-rc2-00011-g1247637727f2 #61 Hardware name: 8375-42A POWER9 0x4e1202 opal:v7.0-16-g9b85f7d961 PowerNV NIP: c000000000194a1c LR: c000000000194a18 CTR: c000000000a78670 REGS: c00000004d2134e0 TRAP: 0700 Tainted: G W (6.2.0-rc2-00011-g1247637727f2) MSR: 9000000000021033 <SF,HV,ME,IR,DR,RI,LE> CR: 48002824 XER: 00000000 CFAR: c00000000013fb64 IRQMASK: 1 The above warning triggered because the current imc-pmu code uses mutex lock in interrupt disabled sections. The function mutex_lock() internally calls __might_resched(), which will check if IRQs are disabled and in case IRQs are disabled, it will trigger the warning. Fix the issue by changing the mutex lock to spinlock. [mpe: Fix comments, trim oops in change log, add reported-by tags]
CVE-2023-52894 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_ncm: fix potential NULL ptr deref in ncm_bitrate() In Google internal bug 265639009 we've received an (as yet) unreproducible crash report from an aarch64 GKI 5.10.149-android13 running device. AFAICT the source code is at: https://android.googlesource.com/kernel/common/+/refs/tags/ASB-2022-12-05_13-5.10 The call stack is: ncm_close() -> ncm_notify() -> ncm_do_notify() with the crash at: ncm_do_notify+0x98/0x270 Code: 79000d0b b9000a6c f940012a f9400269 (b9405d4b) Which I believe disassembles to (I don't know ARM assembly, but it looks sane enough to me...): // halfword (16-bit) store presumably to event->wLength (at offset 6 of struct usb_cdc_notification) 0B 0D 00 79 strh w11, [x8, #6] // word (32-bit) store presumably to req->Length (at offset 8 of struct usb_request) 6C 0A 00 B9 str w12, [x19, #8] // x10 (NULL) was read here from offset 0 of valid pointer x9 // IMHO we're reading 'cdev->gadget' and getting NULL // gadget is indeed at offset 0 of struct usb_composite_dev 2A 01 40 F9 ldr x10, [x9] // loading req->buf pointer, which is at offset 0 of struct usb_request 69 02 40 F9 ldr x9, [x19] // x10 is null, crash, appears to be attempt to read cdev->gadget->max_speed 4B 5D 40 B9 ldr w11, [x10, #0x5c] which seems to line up with ncm_do_notify() case NCM_NOTIFY_SPEED code fragment: event->wLength = cpu_to_le16(8); req->length = NCM_STATUS_BYTECOUNT; /* SPEED_CHANGE data is up/down speeds in bits/sec */ data = req->buf + sizeof *event; data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget)); My analysis of registers and NULL ptr deref crash offset (Unable to handle kernel NULL pointer dereference at virtual address 000000000000005c) heavily suggests that the crash is due to 'cdev->gadget' being NULL when executing: data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget)); which calls: ncm_bitrate(NULL) which then calls: gadget_is_superspeed(NULL) which reads ((struct usb_gadget *)NULL)->max_speed and hits a panic. AFAICT, if I'm counting right, the offset of max_speed is indeed 0x5C. (remember there's a GKI KABI reservation of 16 bytes in struct work_struct) It's not at all clear to me how this is all supposed to work... but returning 0 seems much better than panic-ing...
CVE-2023-52644 In the Linux kernel, the following vulnerability has been resolved: wifi: b43: Stop/wake correct queue in DMA Tx path when QoS is disabled When QoS is disabled, the queue priority value will not map to the correct ieee80211 queue since there is only one queue. Stop/wake queue 0 when QoS is disabled to prevent trying to stop/wake a non-existent queue and failing to stop/wake the actual queue instantiated. Log of issue before change (with kernel parameter qos=0): [ +5.112651] ------------[ cut here ]------------ [ +0.000005] WARNING: CPU: 7 PID: 25513 at net/mac80211/util.c:449 __ieee80211_wake_queue+0xd5/0x180 [mac80211] [ +0.000067] Modules linked in: b43(O) snd_seq_dummy snd_hrtimer snd_seq snd_seq_device nft_chain_nat xt_MASQUERADE nf_nat xfrm_user xfrm_algo xt_addrtype overlay ccm af_packet amdgpu snd_hda_codec_cirrus snd_hda_codec_generic ledtrig_audio drm_exec amdxcp gpu_sched xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_rpfilter ipt_rpfilter xt_pkttype xt_LOG nf_log_syslog xt_tcpudp nft_compat nf_tables nfnetlink sch_fq_codel btusb uinput iTCO_wdt ctr btrtl intel_pmc_bxt i915 intel_rapl_msr mei_hdcp mei_pxp joydev at24 watchdog btintel atkbd libps2 serio radeon btbcm vivaldi_fmap btmtk intel_rapl_common snd_hda_codec_hdmi bluetooth uvcvideo nls_iso8859_1 applesmc nls_cp437 x86_pkg_temp_thermal snd_hda_intel intel_powerclamp vfat videobuf2_vmalloc coretemp fat snd_intel_dspcfg crc32_pclmul uvc polyval_clmulni snd_intel_sdw_acpi loop videobuf2_memops snd_hda_codec tun drm_suballoc_helper polyval_generic drm_ttm_helper drm_buddy tap ecdh_generic videobuf2_v4l2 gf128mul macvlan ttm ghash_clmulni_intel ecc tg3 [ +0.000044] videodev bridge snd_hda_core rapl crc16 drm_display_helper cec mousedev snd_hwdep evdev intel_cstate bcm5974 hid_appleir videobuf2_common stp mac_hid libphy snd_pcm drm_kms_helper acpi_als mei_me intel_uncore llc mc snd_timer intel_gtt industrialio_triggered_buffer apple_mfi_fastcharge i2c_i801 mei snd lpc_ich agpgart ptp i2c_smbus thunderbolt apple_gmux i2c_algo_bit kfifo_buf video industrialio soundcore pps_core wmi tiny_power_button sbs sbshc button ac cordic bcma mac80211 cfg80211 ssb rfkill libarc4 kvm_intel kvm drm irqbypass fuse backlight firmware_class efi_pstore configfs efivarfs dmi_sysfs ip_tables x_tables autofs4 dm_crypt cbc encrypted_keys trusted asn1_encoder tee tpm rng_core input_leds hid_apple led_class hid_generic usbhid hid sd_mod t10_pi crc64_rocksoft crc64 crc_t10dif crct10dif_generic ahci libahci libata uhci_hcd ehci_pci ehci_hcd crct10dif_pclmul crct10dif_common sha512_ssse3 sha512_generic sha256_ssse3 sha1_ssse3 aesni_intel usbcore scsi_mod libaes crypto_simd cryptd scsi_common [ +0.000055] usb_common rtc_cmos btrfs blake2b_generic libcrc32c crc32c_generic crc32c_intel xor raid6_pq dm_snapshot dm_bufio dm_mod dax [last unloaded: b43(O)] [ +0.000009] CPU: 7 PID: 25513 Comm: irq/17-b43 Tainted: G W O 6.6.7 #1-NixOS [ +0.000003] Hardware name: Apple Inc. MacBookPro8,3/Mac-942459F5819B171B, BIOS 87.0.0.0.0 06/13/2019 [ +0.000001] RIP: 0010:__ieee80211_wake_queue+0xd5/0x180 [mac80211] [ +0.000046] Code: 00 45 85 e4 0f 85 9b 00 00 00 48 8d bd 40 09 00 00 f0 48 0f ba ad 48 09 00 00 00 72 0f 5b 5d 41 5c 41 5d 41 5e e9 cb 6d 3c d0 <0f> 0b 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc 48 8d b4 16 94 00 00 [ +0.000002] RSP: 0018:ffffc90003c77d60 EFLAGS: 00010097 [ +0.000001] RAX: 0000000000000001 RBX: 0000000000000002 RCX: 0000000000000000 [ +0.000001] RDX: 0000000000000000 RSI: 0000000000000002 RDI: ffff88820b924900 [ +0.000002] RBP: ffff88820b924900 R08: ffffc90003c77d90 R09: 000000000003bfd0 [ +0.000001] R10: ffff88820b924900 R11: ffffc90003c77c68 R12: 0000000000000000 [ +0.000001] R13: 0000000000000000 R14: ffffc90003c77d90 R15: ffffffffc0fa6f40 [ +0.000001] FS: 0000000000000000(0000) GS:ffff88846fb80000(0000) knlGS:0000000000000000 [ +0.000001] CS: 0010 DS: 0 ---truncated---
CVE-2023-50259 Medusa is an automatic video library manager for TV shows. Versions prior to 1.0.19 are vulnerable to unauthenticated blind server-side request forgery (SSRF). The `testslack` request handler in `medusa/server/web/home/handler.py` does not validate the user-controlled `slack_webhook` variable and passes it to the `notifiers.slack_notifier.test_notify` method, then `_notify_slack` and finally `_send_slack` method, which sends a POST request to the user-controlled URL on line 103 in `/medusa/notifiers/slack.py`, which leads to a blind server-side request forgery (SSRF). This issue allows for crafting POST requests on behalf of the Medusa server. Version 1.0.19 contains a fix for the issue.
CVE-2023-50258 Medusa is an automatic video library manager for TV shows. Versions prior to 1.0.19 are vulnerable to unauthenticated blind server-side request forgery (SSRF). The `testDiscord` request handler in `medusa/server/web/home/handler.py` does not validate the user-controlled `discord_webhook` variable and passes it to the `notifiers.discord_notifier.test_notify` method, then `_notify_discord` and finally `_send_discord_msg` method, which sends a POST request to the user-controlled URL on line 64 in `/medusa/notifiers/discord.py`, which leads to a blind server-side request forgery. This issue allows for crafting POST requests on behalf of the Medusa server. Version 1.0.19 contains a fix for the issue.
CVE-2023-3947 The Video Conferencing with Zoom plugin for WordPress is vulnerable to Sensitive Information Exposure due to hardcoded encryption key on the 'vczapi_encrypt_decrypt' function in versions up to, and including, 4.2.1. This makes it possible for unauthenticated attackers to decrypt and view the meeting id and password.
CVE-2023-28845 Nextcloud talk is a video & audio conferencing app for Nextcloud. In affected versions the talk app does not properly filter access to a conversations member list. As a result an attacker could use this vulnerability to gain information about the members of a Talk conversation, even if they themselves are not members. It is recommended that the Nextcloud Talk is upgraded to 14.0.9 or 15.0.4. There are no known workarounds for this vulnerability.
CVE-2023-23614 Pi-hole®'s Web interface (based off of AdminLTE) provides a central location to manage your Pi-hole. Versions 4.0 and above, prior to 5.18.3 are vulnerable to Insufficient Session Expiration. Improper use of admin WEBPASSWORD hash as "Remember me for 7 days" cookie value makes it possible for an attacker to "pass the hash" to login or reuse a theoretically expired "remember me" cookie. It also exposes the hash over the network and stores it unnecessarily in the browser. The cookie itself is set to expire after 7 days but its value will remain valid as long as the admin password doesn't change. If a cookie is leaked or compromised it could be used forever as long as the admin password is not changed. An attacker that obtained the password hash via an other attack vector (for example a path traversal vulnerability) could use it to login as the admin by setting the hash as the cookie value without the need to crack it to obtain the admin password (pass the hash). The hash is exposed over the network and in the browser where the cookie is transmitted and stored. This issue is patched in version 5.18.3.
CVE-2022-50163 In the Linux kernel, the following vulnerability has been resolved: ax25: fix incorrect dev_tracker usage While investigating a separate rose issue [1], and enabling CONFIG_NET_DEV_REFCNT_TRACKER=y, Bernard reported an orthogonal ax25 issue [2] An ax25_dev can be used by one (or many) struct ax25_cb. We thus need different dev_tracker, one per struct ax25_cb. After this patch is applied, we are able to focus on rose. [1] https://lore.kernel.org/netdev/fb7544a1-f42e-9254-18cc-c9b071f4ca70@free.fr/ [2] [ 205.798723] reference already released. [ 205.798732] allocated in: [ 205.798734] ax25_bind+0x1a2/0x230 [ax25] [ 205.798747] __sys_bind+0xea/0x110 [ 205.798753] __x64_sys_bind+0x18/0x20 [ 205.798758] do_syscall_64+0x5c/0x80 [ 205.798763] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 205.798768] freed in: [ 205.798770] ax25_release+0x115/0x370 [ax25] [ 205.798778] __sock_release+0x42/0xb0 [ 205.798782] sock_close+0x15/0x20 [ 205.798785] __fput+0x9f/0x260 [ 205.798789] ____fput+0xe/0x10 [ 205.798792] task_work_run+0x64/0xa0 [ 205.798798] exit_to_user_mode_prepare+0x18b/0x190 [ 205.798804] syscall_exit_to_user_mode+0x26/0x40 [ 205.798808] do_syscall_64+0x69/0x80 [ 205.798812] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 205.798827] ------------[ cut here ]------------ [ 205.798829] WARNING: CPU: 2 PID: 2605 at lib/ref_tracker.c:136 ref_tracker_free.cold+0x60/0x81 [ 205.798837] Modules linked in: rose netrom mkiss ax25 rfcomm cmac algif_hash algif_skcipher af_alg bnep snd_hda_codec_hdmi nls_iso8859_1 i915 rtw88_8821ce rtw88_8821c x86_pkg_temp_thermal rtw88_pci intel_powerclamp rtw88_core snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio coretemp snd_hda_intel kvm_intel snd_intel_dspcfg mac80211 snd_hda_codec kvm i2c_algo_bit drm_buddy drm_dp_helper btusb drm_kms_helper snd_hwdep btrtl snd_hda_core btbcm joydev crct10dif_pclmul btintel crc32_pclmul ghash_clmulni_intel mei_hdcp btmtk intel_rapl_msr aesni_intel bluetooth input_leds snd_pcm crypto_simd syscopyarea processor_thermal_device_pci_legacy sysfillrect cryptd intel_soc_dts_iosf snd_seq sysimgblt ecdh_generic fb_sys_fops rapl libarc4 processor_thermal_device intel_cstate processor_thermal_rfim cec snd_timer ecc snd_seq_device cfg80211 processor_thermal_mbox mei_me processor_thermal_rapl mei rc_core at24 snd intel_pch_thermal intel_rapl_common ttm soundcore int340x_thermal_zone video [ 205.798948] mac_hid acpi_pad sch_fq_codel ipmi_devintf ipmi_msghandler drm msr parport_pc ppdev lp parport ramoops pstore_blk reed_solomon pstore_zone efi_pstore ip_tables x_tables autofs4 hid_generic usbhid hid i2c_i801 i2c_smbus r8169 xhci_pci ahci libahci realtek lpc_ich xhci_pci_renesas [last unloaded: ax25] [ 205.798992] CPU: 2 PID: 2605 Comm: ax25ipd Not tainted 5.18.11-F6BVP #3 [ 205.798996] Hardware name: To be filled by O.E.M. To be filled by O.E.M./CK3, BIOS 5.011 09/16/2020 [ 205.798999] RIP: 0010:ref_tracker_free.cold+0x60/0x81 [ 205.799005] Code: e8 d2 01 9b ff 83 7b 18 00 74 14 48 c7 c7 2f d7 ff 98 e8 10 6e fc ff 8b 7b 18 e8 b8 01 9b ff 4c 89 ee 4c 89 e7 e8 5d fd 07 00 <0f> 0b b8 ea ff ff ff e9 30 05 9b ff 41 0f b6 f7 48 c7 c7 a0 fa 4e [ 205.799008] RSP: 0018:ffffaf5281073958 EFLAGS: 00010286 [ 205.799011] RAX: 0000000080000000 RBX: ffff9a0bd687ebe0 RCX: 0000000000000000 [ 205.799014] RDX: 0000000000000001 RSI: 0000000000000282 RDI: 00000000ffffffff [ 205.799016] RBP: ffffaf5281073a10 R08: 0000000000000003 R09: fffffffffffd5618 [ 205.799019] R10: 0000000000ffff10 R11: 000000000000000f R12: ffff9a0bc53384d0 [ 205.799022] R13: 0000000000000282 R14: 00000000ae000001 R15: 0000000000000001 [ 205.799024] FS: 0000000000000000(0000) GS:ffff9a0d0f300000(0000) knlGS:0000000000000000 [ 205.799028] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 205.799031] CR2: 00007ff6b8311554 CR3: 000000001ac10004 CR4: 00000000001706e0 [ 205.799033] Call Trace: [ 205.799035] <TASK> [ 205.799038] ? ax25_dev_device_down+0xd9/ ---truncated---
CVE-2022-48845 In the Linux kernel, the following vulnerability has been resolved: MIPS: smp: fill in sibling and core maps earlier After enabling CONFIG_SCHED_CORE (landed during 5.14 cycle), 2-core 2-thread-per-core interAptiv (CPS-driven) started emitting the following: [ 0.025698] CPU1 revision is: 0001a120 (MIPS interAptiv (multi)) [ 0.048183] ------------[ cut here ]------------ [ 0.048187] WARNING: CPU: 1 PID: 0 at kernel/sched/core.c:6025 sched_core_cpu_starting+0x198/0x240 [ 0.048220] Modules linked in: [ 0.048233] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.17.0-rc3+ #35 b7b319f24073fd9a3c2aa7ad15fb7993eec0b26f [ 0.048247] Stack : 817f0000 00000004 327804c8 810eb050 00000000 00000004 00000000 c314fdd1 [ 0.048278] 830cbd64 819c0000 81800000 817f0000 83070bf4 00000001 830cbd08 00000000 [ 0.048307] 00000000 00000000 815fcbc4 00000000 00000000 00000000 00000000 00000000 [ 0.048334] 00000000 00000000 00000000 00000000 817f0000 00000000 00000000 817f6f34 [ 0.048361] 817f0000 818a3c00 817f0000 00000004 00000000 00000000 4dc33260 0018c933 [ 0.048389] ... [ 0.048396] Call Trace: [ 0.048399] [<8105a7bc>] show_stack+0x3c/0x140 [ 0.048424] [<8131c2a0>] dump_stack_lvl+0x60/0x80 [ 0.048440] [<8108b5c0>] __warn+0xc0/0xf4 [ 0.048454] [<8108b658>] warn_slowpath_fmt+0x64/0x10c [ 0.048467] [<810bd418>] sched_core_cpu_starting+0x198/0x240 [ 0.048483] [<810c6514>] sched_cpu_starting+0x14/0x80 [ 0.048497] [<8108c0f8>] cpuhp_invoke_callback_range+0x78/0x140 [ 0.048510] [<8108d914>] notify_cpu_starting+0x94/0x140 [ 0.048523] [<8106593c>] start_secondary+0xbc/0x280 [ 0.048539] [ 0.048543] ---[ end trace 0000000000000000 ]--- [ 0.048636] Synchronize counters for CPU 1: done. ...for each but CPU 0/boot. Basic debug printks right before the mentioned line say: [ 0.048170] CPU: 1, smt_mask: So smt_mask, which is sibling mask obviously, is empty when entering the function. This is critical, as sched_core_cpu_starting() calculates core-scheduling parameters only once per CPU start, and it's crucial to have all the parameters filled in at that moment (at least it uses cpu_smt_mask() which in fact is `&cpu_sibling_map[cpu]` on MIPS). A bit of debugging led me to that set_cpu_sibling_map() performing the actual map calculation, was being invocated after notify_cpu_start(), and exactly the latter function starts CPU HP callback round (sched_core_cpu_starting() is basically a CPU HP callback). While the flow is same on ARM64 (maps after the notifier, although before calling set_cpu_online()), x86 started calculating sibling maps earlier than starting the CPU HP callbacks in Linux 4.14 (see [0] for the reference). Neither me nor my brief tests couldn't find any potential caveats in calculating the maps right after performing delay calibration, but the WARN splat is now gone. The very same debug prints now yield exactly what I expected from them: [ 0.048433] CPU: 1, smt_mask: 0-1 [0] https://git.kernel.org/pub/scm/linux/kernel/git/mips/linux.git/commit/?id=76ce7cfe35ef
CVE-2022-4578 The Video Conferencing with Zoom WordPress plugin before 4.0.10 does not validate and escape some of its shortcode attributes before outputting them back in the page, which could allow users with a role as low as contributor to perform Stored Cross-Site Scripting attacks which could be used against high privilege users such as admins.
CVE-2022-41971 Nextcould Talk android is a video and audio conferencing app for Nextcloud. Prior to versions 12.2.8, 13.0.10, 14.0.6, and 15.0.0, guests can continue to receive video streams from a call after being removed from a conversation. An attacker would be able to see videos on a call in a public conversation after being removed from that conversation, provided that they were removed while being in the call. Versions 12.2.8, 13.0.10, 14.0.6, and 15.0.0 contain patches for the issue. No known workarounds are available.
CVE-2022-35932 Nextcloud Talk is a video and audio conferencing app for Nextcloud. Prior to versions 12.2.7, 13.0.7, and 14.0.3, password protected conversations are susceptible to brute force attacks if the attacker has the link/conversation token. It is recommended that the Nextcloud Talk application is upgraded to 12.2.7, 13.0.7 or 14.0.3. There are currently no known workarounds available apart from not having password protected conversations.
CVE-2022-31195 DSpace open source software is a repository application which provides durable access to digital resources. In affected versions the ItemImportServiceImpl is vulnerable to a path traversal vulnerability. This means a malicious SAF (simple archive format) package could cause a file/directory to be created anywhere the Tomcat/DSpace user can write to on the server. However, this path traversal vulnerability is only possible by a user with special privileges (either Administrators or someone with command-line access to the server). This vulnerability impacts the XMLUI, JSPUI and command-line. Users are advised to upgrade. As a basic workaround, users may block all access to the following URL paths: If you are using the XMLUI, block all access to /admin/batchimport path (this is the URL of the Admin Batch Import tool). Keep in mind, if your site uses the path "/xmlui", then you'd need to block access to /xmlui/admin/batchimport. If you are using the JSPUI, block all access to /dspace-admin/batchimport path (this is the URL of the Admin Batch Import tool). Keep in mind, if your site uses the path "/jspui", then you'd need to block access to /jspui/dspace-admin/batchimport. Keep in mind, only an Administrative user or a user with command-line access to the server is able to import/upload SAF packages. Therefore, assuming those users do not blindly upload untrusted SAF packages, then it is unlikely your site could be impacted by this vulnerability.
CVE-2022-29235 BigBlueButton is an open source web conferencing system. Starting in version 2.2 and prior to versions 2.3.18 and 2.4-rc-6, an attacker who is able to obtain the meeting identifier for a meeting on a server can find information related to an external video being shared, like the current timestamp and play/pause. The problem has been patched in versions 2.3.18 and 2.4-rc-6 by modifying the stream to send the data only for users in the meeting. There are currently no known workarounds.
CVE-2022-24890 Nextcloud Talk is a video and audio conferencing app for Nextcloud. In versions prior to 13.0.5 and 14.0.0, a call moderator can indirectly enable user webcams by granting permissions, if they were enabled before removing the permissions. A patch is available in versions 13.0.5 and 14.0.0. There are currently no known workarounds.
CVE-2022-24887 Nextcloud Talk is a video and audio conferencing app for Nextcloud, a self-hosted productivity platform. Prior to versions 11.3.4, 12.2.2, and 13.0.0, when sharing a Deck card in conversation, the metaData can be manipulated so users can be tricked into opening arbitrary URLs. This issue is fixed in versions 11.3.4, 12.2.2, and 13.0.0. There are currently no known workarounds.
CVE-2022-0384 The Video Conferencing with Zoom WordPress plugin before 3.8.17 does not have authorisation in its vczapi_get_wp_users AJAX action, allowing any authenticated users, such as subscriber to download the list of email addresses registered on the blog
CVE-2021-47552 In the Linux kernel, the following vulnerability has been resolved: blk-mq: cancel blk-mq dispatch work in both blk_cleanup_queue and disk_release() For avoiding to slow down queue destroy, we don't call blk_mq_quiesce_queue() in blk_cleanup_queue(), instead of delaying to cancel dispatch work in blk_release_queue(). However, this way has caused kernel oops[1], reported by Changhui. The log shows that scsi_device can be freed before running blk_release_queue(), which is expected too since scsi_device is released after the scsi disk is closed and the scsi_device is removed. Fixes the issue by canceling blk-mq dispatch work in both blk_cleanup_queue() and disk_release(): 1) when disk_release() is run, the disk has been closed, and any sync dispatch activities have been done, so canceling dispatch work is enough to quiesce filesystem I/O dispatch activity. 2) in blk_cleanup_queue(), we only focus on passthrough request, and passthrough request is always explicitly allocated & freed by its caller, so once queue is frozen, all sync dispatch activity for passthrough request has been done, then it is enough to just cancel dispatch work for avoiding any dispatch activity. [1] kernel panic log [12622.769416] BUG: kernel NULL pointer dereference, address: 0000000000000300 [12622.777186] #PF: supervisor read access in kernel mode [12622.782918] #PF: error_code(0x0000) - not-present page [12622.788649] PGD 0 P4D 0 [12622.791474] Oops: 0000 [#1] PREEMPT SMP PTI [12622.796138] CPU: 10 PID: 744 Comm: kworker/10:1H Kdump: loaded Not tainted 5.15.0+ #1 [12622.804877] Hardware name: Dell Inc. PowerEdge R730/0H21J3, BIOS 1.5.4 10/002/2015 [12622.813321] Workqueue: kblockd blk_mq_run_work_fn [12622.818572] RIP: 0010:sbitmap_get+0x75/0x190 [12622.823336] Code: 85 80 00 00 00 41 8b 57 08 85 d2 0f 84 b1 00 00 00 45 31 e4 48 63 cd 48 8d 1c 49 48 c1 e3 06 49 03 5f 10 4c 8d 6b 40 83 f0 01 <48> 8b 33 44 89 f2 4c 89 ef 0f b6 c8 e8 fa f3 ff ff 83 f8 ff 75 58 [12622.844290] RSP: 0018:ffffb00a446dbd40 EFLAGS: 00010202 [12622.850120] RAX: 0000000000000001 RBX: 0000000000000300 RCX: 0000000000000004 [12622.858082] RDX: 0000000000000006 RSI: 0000000000000082 RDI: ffffa0b7a2dfe030 [12622.866042] RBP: 0000000000000004 R08: 0000000000000001 R09: ffffa0b742721334 [12622.874003] R10: 0000000000000008 R11: 0000000000000008 R12: 0000000000000000 [12622.881964] R13: 0000000000000340 R14: 0000000000000000 R15: ffffa0b7a2dfe030 [12622.889926] FS: 0000000000000000(0000) GS:ffffa0baafb40000(0000) knlGS:0000000000000000 [12622.898956] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [12622.905367] CR2: 0000000000000300 CR3: 0000000641210001 CR4: 00000000001706e0 [12622.913328] Call Trace: [12622.916055] <TASK> [12622.918394] scsi_mq_get_budget+0x1a/0x110 [12622.922969] __blk_mq_do_dispatch_sched+0x1d4/0x320 [12622.928404] ? pick_next_task_fair+0x39/0x390 [12622.933268] __blk_mq_sched_dispatch_requests+0xf4/0x140 [12622.939194] blk_mq_sched_dispatch_requests+0x30/0x60 [12622.944829] __blk_mq_run_hw_queue+0x30/0xa0 [12622.949593] process_one_work+0x1e8/0x3c0 [12622.954059] worker_thread+0x50/0x3b0 [12622.958144] ? rescuer_thread+0x370/0x370 [12622.962616] kthread+0x158/0x180 [12622.966218] ? set_kthread_struct+0x40/0x40 [12622.970884] ret_from_fork+0x22/0x30 [12622.974875] </TASK> [12622.977309] Modules linked in: scsi_debug rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs sunrpc dm_multipath intel_rapl_msr intel_rapl_common dell_wmi_descriptor sb_edac rfkill video x86_pkg_temp_thermal intel_powerclamp dcdbas coretemp kvm_intel kvm mgag200 irqbypass i2c_algo_bit rapl drm_kms_helper ipmi_ssif intel_cstate intel_uncore syscopyarea sysfillrect sysimgblt fb_sys_fops pcspkr cec mei_me lpc_ich mei ipmi_si ipmi_devintf ipmi_msghandler acpi_power_meter drm fuse xfs libcrc32c sr_mod cdrom sd_mod t10_pi sg ixgbe ahci libahci crct10dif_pclmul crc32_pclmul crc32c_intel libata megaraid_sas ghash_clmulni_intel tg3 wdat_w ---truncated---
CVE-2021-47302 In the Linux kernel, the following vulnerability has been resolved: igc: Fix use-after-free error during reset Cleans the next descriptor to watch (next_to_watch) when cleaning the TX ring. Failure to do so can cause invalid memory accesses. If igc_poll() runs while the controller is being reset this can lead to the driver try to free a skb that was already freed. Log message: [ 101.525242] refcount_t: underflow; use-after-free. [ 101.525251] WARNING: CPU: 1 PID: 646 at lib/refcount.c:28 refcount_warn_saturate+0xab/0xf0 [ 101.525259] Modules linked in: sch_etf(E) sch_mqprio(E) rfkill(E) intel_rapl_msr(E) intel_rapl_common(E) x86_pkg_temp_thermal(E) intel_powerclamp(E) coretemp(E) binfmt_misc(E) kvm_intel(E) kvm(E) irqbypass(E) crc32_pclmul(E) ghash_clmulni_intel(E) aesni_intel(E) mei_wdt(E) libaes(E) crypto_simd(E) cryptd(E) glue_helper(E) snd_hda_codec_hdmi(E) rapl(E) intel_cstate(E) snd_hda_intel(E) snd_intel_dspcfg(E) sg(E) soundwire_intel(E) intel_uncore(E) at24(E) soundwire_generic_allocation(E) iTCO_wdt(E) soundwire_cadence(E) intel_pmc_bxt(E) serio_raw(E) snd_hda_codec(E) iTCO_vendor_support(E) watchdog(E) snd_hda_core(E) snd_hwdep(E) snd_soc_core(E) snd_compress(E) snd_pcsp(E) soundwire_bus(E) snd_pcm(E) evdev(E) snd_timer(E) mei_me(E) snd(E) soundcore(E) mei(E) configfs(E) ip_tables(E) x_tables(E) autofs4(E) ext4(E) crc32c_generic(E) crc16(E) mbcache(E) jbd2(E) sd_mod(E) t10_pi(E) crc_t10dif(E) crct10dif_generic(E) i915(E) ahci(E) libahci(E) ehci_pci(E) igb(E) xhci_pci(E) ehci_hcd(E) [ 101.525303] drm_kms_helper(E) dca(E) xhci_hcd(E) libata(E) crct10dif_pclmul(E) cec(E) crct10dif_common(E) tsn(E) igc(E) e1000e(E) ptp(E) i2c_i801(E) crc32c_intel(E) psmouse(E) i2c_algo_bit(E) i2c_smbus(E) scsi_mod(E) lpc_ich(E) pps_core(E) usbcore(E) drm(E) button(E) video(E) [ 101.525318] CPU: 1 PID: 646 Comm: irq/37-enp7s0-T Tainted: G E 5.10.30-rt37-tsn1-rt-ipipe #ipipe [ 101.525320] Hardware name: SIEMENS AG SIMATIC IPC427D/A5E31233588, BIOS V17.02.09 03/31/2017 [ 101.525322] RIP: 0010:refcount_warn_saturate+0xab/0xf0 [ 101.525325] Code: 05 31 48 44 01 01 e8 f0 c6 42 00 0f 0b c3 80 3d 1f 48 44 01 00 75 90 48 c7 c7 78 a8 f3 a6 c6 05 0f 48 44 01 01 e8 d1 c6 42 00 <0f> 0b c3 80 3d fe 47 44 01 00 0f 85 6d ff ff ff 48 c7 c7 d0 a8 f3 [ 101.525327] RSP: 0018:ffffbdedc0917cb8 EFLAGS: 00010286 [ 101.525329] RAX: 0000000000000000 RBX: ffff98fd6becbf40 RCX: 0000000000000001 [ 101.525330] RDX: 0000000000000001 RSI: ffffffffa6f2700c RDI: 00000000ffffffff [ 101.525332] RBP: ffff98fd6becc14c R08: ffffffffa7463d00 R09: ffffbdedc0917c50 [ 101.525333] R10: ffffffffa74c3578 R11: 0000000000000034 R12: 00000000ffffff00 [ 101.525335] R13: ffff98fd6b0b1000 R14: 0000000000000039 R15: ffff98fd6be35c40 [ 101.525337] FS: 0000000000000000(0000) GS:ffff98fd6e240000(0000) knlGS:0000000000000000 [ 101.525339] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 101.525341] CR2: 00007f34135a3a70 CR3: 0000000150210003 CR4: 00000000001706e0 [ 101.525343] Call Trace: [ 101.525346] sock_wfree+0x9c/0xa0 [ 101.525353] unix_destruct_scm+0x7b/0xa0 [ 101.525358] skb_release_head_state+0x40/0x90 [ 101.525362] skb_release_all+0xe/0x30 [ 101.525364] napi_consume_skb+0x57/0x160 [ 101.525367] igc_poll+0xb7/0xc80 [igc] [ 101.525376] ? sched_clock+0x5/0x10 [ 101.525381] ? sched_clock_cpu+0xe/0x100 [ 101.525385] net_rx_action+0x14c/0x410 [ 101.525388] __do_softirq+0xe9/0x2f4 [ 101.525391] __local_bh_enable_ip+0xe3/0x110 [ 101.525395] ? irq_finalize_oneshot.part.47+0xe0/0xe0 [ 101.525398] irq_forced_thread_fn+0x6a/0x80 [ 101.525401] irq_thread+0xe8/0x180 [ 101.525403] ? wake_threads_waitq+0x30/0x30 [ 101.525406] ? irq_thread_check_affinity+0xd0/0xd0 [ 101.525408] kthread+0x183/0x1a0 [ 101.525412] ? kthread_park+0x80/0x80 [ 101.525415] ret_from_fork+0x22/0x30
CVE-2021-43807 Opencast is an Open Source Lecture Capture & Video Management for Education. Opencast versions prior to 9.10 allow HTTP method spoofing, allowing to change the assumed HTTP method via URL parameter. This allows attackers to turn HTTP GET requests into PUT requests or an HTTP form to send DELETE requests. This bypasses restrictions otherwise put on these types of requests and aids in cross-site request forgery (CSRF) attacks, which would otherwise not be possible. The vulnerability allows attackers to craft links or forms which may change the server state. This issue is fixed in Opencast 9.10 and 10.0. You can mitigate the problem by setting the `SameSite=Strict` attribute for your cookies. If this is a viable option for you depends on your integrations. We strongly recommend updating in any case.
CVE-2021-39215 Jitsi Meet is an open source video conferencing application. In versions prior to 2.0.5963, a Prosody module allows the use of symmetrical algorithms to validate JSON web tokens. This means that tokens generated by arbitrary sources can be used to gain authorization to protected rooms. This issue is fixed in Jitsi Meet 2.0.5963. There are no known workarounds aside from updating.
CVE-2021-39205 Jitsi Meet is an open source video conferencing application. Versions prior to 2.0.6173 are vulnerable to client-side cross-site scripting via injecting properties into JSON objects that were not properly escaped. There are no known incidents related to this vulnerability being exploited in the wild. This issue is fixed in Jitsi Meet version 2.0.6173. There are no known workarounds aside from upgrading.
CVE-2021-36845 Multiple Authenticated Stored Cross-Site Scripting (XSS) vulnerabilities in YITH Maintenance Mode (WordPress plugin) versions <= 1.3.8, there are 46 vulnerable parameters that were missed by the vendor while patching the 1.3.7 version to 1.3.8. Vulnerable parameters: 1 - "Newsletter" tab, &yith_maintenance_newsletter_submit_label parameter: payload should start with a single quote (') symbol to break the context, i.e.: NOTIFY ME' autofocus onfocus=alert(/Visse/);// v=' - this payload will be auto triggered while admin visits this page/tab. 2 - "General" tab issues, vulnerable parameters: &yith_maintenance_message, &yith_maintenance_custom_style, &yith_maintenance_mascotte, &yith_maintenance_title_font[size], &yith_maintenance_title_font[family], &yith_maintenance_title_font[color], &yith_maintenance_paragraph_font[size], &yith_maintenance_paragraph_font[family], &yith_maintenance_paragraph_font[color], &yith_maintenance_border_top. 3 - "Background" tab issues, vulnerable parameters: &yith_maintenance_background_image, &yith_maintenance_background_color. 4 - "Logo" tab issues, vulnerable parameters: &yith_maintenance_logo_image, &yith_maintenance_logo_tagline, &yith_maintenance_logo_tagline_font[size], &yith_maintenance_logo_tagline_font[family], &yith_maintenance_logo_tagline_font[color]. 5 - "Newsletter" tab issues, vulnerable parameters: &yith_maintenance_newsletter_email_font[size], &yith_maintenance_newsletter_email_font[family], &yith_maintenance_newsletter_email_font[color], &yith_maintenance_newsletter_submit_font[size], &yith_maintenance_newsletter_submit_font[family], &yith_maintenance_newsletter_submit_font[color], &yith_maintenance_newsletter_submit_background, &yith_maintenance_newsletter_submit_background_hover, &yith_maintenance_newsletter_title, &yith_maintenance_newsletter_action, &yith_maintenance_newsletter_email_label, &yith_maintenance_newsletter_email_name, &yith_maintenance_newsletter_submit_label, &yith_maintenance_newsletter_hidden_fields. 6 - "Socials" tab issues, vulnerable parameters: &yith_maintenance_socials_facebook, &yith_maintenance_socials_twitter, &yith_maintenance_socials_gplus, &yith_maintenance_socials_youtube, &yith_maintenance_socials_rss, &yith_maintenance_socials_skype, &yith_maintenance_socials_email, &yith_maintenance_socials_behance, &yith_maintenance_socials_dribble, &yith_maintenance_socials_flickr, &yith_maintenance_socials_instagram, &yith_maintenance_socials_pinterest, &yith_maintenance_socials_tumblr, &yith_maintenance_socials_linkedin.
CVE-2021-28001 A cross-site scripting vulnerability was discovered in the Comments parameter in Textpattern CMS 4.8.4 which allows remote attackers to execute arbitrary code via a crafted payload entered into the URL field. The vulnerability is triggered by users visiting https://site.com/articles/welcome-to-your-site#comments-head.
CVE-2020-11036 In GLPI before version 9.4.6 there are multiple related stored XSS vulnerabilities. The package is vulnerable to Stored XSS in the comments of items in the Knowledge base. Adding a comment with content "<script>alert(1)</script>" reproduces the attack. This can be exploited by a user with administrator privileges in the User-Agent field. It can also be exploited by an outside party through the following steps: 1. Create a user with the surname `" onmouseover="alert(document.cookie)` and an empty first name. 2. With this user, create a ticket 3. As an administrator (or other privileged user) open the created ticket 4. On the "last update" field, put your mouse on the name of the user 5. The XSS fires This is fixed in version 9.4.6.
CVE-2018-7603 In Drupal's 3rd party module search auto complete prior to versions 7.x-4.8 there is a Cross Site Scripting vulnerability. This Search Autocomplete module enables you to autocomplete textfield using data from your website (nodes, comments, etc.). The module doesn't sufficiently filter user-entered text among the autocompletion items leading to a Cross Site Scripting (XSS) vulnerability. This vulnerability can be exploited by any user allowed to create one of the autocompletion item, for instance, nodes, users, comments.
CVE-2017-13101 Musical.ly Inc., musical.ly - your video social network, 6.1.6, 2017-10-03, iOS application uses a hard-coded key for encryption. Data stored using this key can be decrypted by anyone able to access this key.
CVE-2016-1000112 Unauthenticated remote .jpg file upload in contus-video-comments v1.0 wordpress plugin
CVE-2015-8673 Huawei TE30, TE40, TE50, and TE60 multimedia video conferencing endpoints with software before V100R001C10SPC100 do not require entry of the old password when changing the password for the Debug account, which allows physically proximate attackers to change the password by leveraging an unattended workstation.
CVE-2015-8672 The presentation transmission permission management mechanism in Huawei TE30, TE40, TE50, and TE60 multimedia video conferencing endpoints with software before V100R001C10SPC100 allows remote attackers to cause a denial of service (wired presentation outage) via unspecified vectors involving a wireless presentation.
CVE-2014-4567 Cross-site scripting (XSS) vulnerability in comments/videowhisper2/r_logout.php in the Video Comments Webcam Recorder plugin 1.55, as downloaded before 20140116 for WordPress allows remote attackers to inject arbitrary web script or HTML via the message parameter.
CVE-2013-1169 Cisco Unified MeetingPlace Web Conferencing Server 7.x before 7.1MR1 Patch 2, 8.0 before 8.0MR1 Patch 2, and 8.5 before 8.5MR3 Patch 1, when the Remember Me option is used, does not properly verify cookies, which allows remote attackers to impersonate users via a crafted login request, aka Bug ID CSCuc64846.
CVE-2011-5185 Cross-site scripting (XSS) vulnerability in video_comments.php in Online Subtitles Workshop before 2.0 rev 131 allows remote attackers to inject arbitrary web script or HTML via the comment parameter.
CVE-2007-3134 Multiple cross-site scripting (XSS) vulnerabilities in atomPhotoBlog.php in Atom PhotoBlog 1.0.9 and earlier allow remote attackers to inject arbitrary web script or HTML via the (1) Your Name, (2) Your Homepage, and (3) Your Comment fields, when using "Approve Comments."
CVE-2007-0882 Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10 and 11 (SunOS 5.10 and 5.11) misinterprets certain client "-f" sequences as valid requests for the login program to skip authentication, which allows remote attackers to log into certain accounts, as demonstrated by the bin account.
CVE-2006-5975 Multiple cross-site scripting (XSS) vulnerabilities in comments.asp in BlogMe 3.0 allow remote attackers to inject arbitrary web script or HTML via the (1) Name, (2) URL, or (3) Comments field.
CVE-2006-1697 Cross-site scripting (XSS) vulnerability in Matt Wright Guestbook 2.3.1 allows remote attackers to execute arbitrary web script or HTML via the (1) Your Name, (2) E-Mail, or (3) Comments fields when posting a message.
CVE-2006-0733 ** DISPUTED ** Cross-site scripting (XSS) vulnerability in WordPress 2.0.0 allows remote attackers to inject arbitrary web script or HTML via scriptable attributes such as (1) onfocus and (2) onblur in the "author's website" field. NOTE: followup comments to the researcher's web log suggest that this issue is only exploitable by the same user who injects the XSS, so this might not be a vulnerability.
CVE-2005-1715 Cross-site scripting (XSS) vulnerability in index.php for TOPo 2.2 (2.2.178) allows remote attackers to inject arbitrary web script or HTML via the (1) m, (2) s, (3) ID, or (4) t parameters, or the (5) field name, (6) Your Web field, or (7) email field in the comments section.
CVE-2004-1949 SQL injection vulnerability in PostNuke 7.2.6 and earlier allows remote attackers to execute arbitrary SQL via (1) the sif parameter to index.php in the Comments module or (2) timezoneoffset parameter to changeinfo.php in the Your_Account module.
CVE-2001-0919 Internet Explorer 5.50.4134.0100 on Windows ME with "Prompt to allow cookies to be stored on your machine" enabled does not warn a user when a cookie is set using Javascript.
CVE-2001-0876 Buffer overflow in Universal Plug and Play (UPnP) on Windows 98, 98SE, ME, and XP allows remote attackers to execute arbitrary code via a NOTIFY directive with a long Location URL.
  
You can also search by reference using the CVE Reference Maps.
For More Information:  CVE Request Web Form (select “Other” from dropdown)