
1 of 38

Vulnerability Type Distributions in CVE

Document version: 1.1 Date: May 22, 2007

This is an updated report and does not represent an official position of The
MITRE Corporation. Copyright © 2007, The MITRE Corporation. All rights
reserved. Permission is granted to redistribute this document if this paragraph
is not removed. This document is subject to change without notice.

Author: Steve Christey, Robert A. Martin

URL: http://cwe.mitre.org/documents/vuln-trends.html

Table of Contents

1. Introduction
2. Summary of Results
3. Data Sets
4. Trend Table Color Key
5. Table 1 Analysis: Overall Trends
6. Table 2 and 3 Analysis: OS vs. non-OS
7. Table 4 Analysis: Open and Closed Source
8. Possible Future Work
9. Notes on Potential Bias
10. (In)Frequently Asked Questions
11. Credits
12. References
13. Flaw Terminology
14. Table 1: Overall Results
15. Table 2: OS Vendors
16. Table 3: OS Vendors vs. Others
17. Table 4: Open and Closed Source (OS vendors)

Introduction

For the past 5 years, CVE has been tracking the types of errors that
lead to publicly reported vulnerabilities, and periodically reporting
trends on a limited scale. The primary goal of this study is to better
understand research trends using publicly reported vulnerabilities.

2 of 38

It should be noted that the data is obtained from an uncontrolled
population, i.e., decentralized public reports from a research
community with diverse goals and interests, with an equally diverse
set of vendors and developers. More specialized, exhaustive, and
repeatable methods could be devised to evaluate software security.
But until such methods reach maturity and widespread acceptance,
the overall state of software security can be viewed through the
lens of public reports.

Summary of Results

1) The total number of publicly reported web application

vulnerabilities has risen sharply, to the point where they have
overtaken buffer overflows. This is probably due to ease of
detection and exploitation of web vulnerabilities, combined with
the proliferation of low-grade software applications written by
inexperienced developers. In 2005 and 2006, cross-site script-
ing (XSS) was number 1, and SQL injection was number 2.

2) PHP remote file inclusion (RFI) skyrocketed to number 3 in

2006, almost a 1000% increase over the previous year.
Because RFI allows arbitrary code execution on a vulnerable
server, this is a worrisome trend, although proper configuration
is frequently sufficient to eliminate it. This trend is likely a
reflection of RFI's role in creating botnets using web servers
[Evron].

3) Buffer overflows are still the number 1 issue as reported in

operating system (OS) vendor advisories. XSS is still high in
this category, at number 3 in both 2005 and 2006, although
other web application vulnerabilities appear much less
frequently.

4) Integer overflows, barely in the top 10 overall in the past few

years, are number 2 for OS vendor advisories, behind buffer
overflows. This might indicate expert researcher interest in
high-profile software.

3 of 38

5) There are noticeable differences in the types of vulnerabilities
being reported in open and closed source OS vendor advisories.
These merit further investigation because they might reflect
important differences in development, research, and disclosure
practices.

6) The data is inconclusive regarding whether there is a concrete

improvement in overall software security. While there is a rise
in new vulnerability classes, and increasing diversity of
vulnerability types, the raw numbers for older classes have not
changed significantly. Further investigation is also required in
this area.

Changes From October 2006 Report

A draft of this report was released in October 2006, due to
widespread demand. While this paper is largely based on that
report, the following differences are most significant:

1) The 2006 statistics cover the entire year.

2) An important statistical gap with CSRF is reported; see Table 1

analysis.

3) PHP remote file inclusion (RFI) is #4 overall, not #5, and is

much closer to SQL injection in 2006 than originally reported.
RFI's linkage to web server botnets is mentioned in the
‘Summary of Results’ and ‘Overall Trends’ sections.

4) The complete report has minor statistical discrepancies with the

October report regarding total numbers of CVEs, due to (a)
incidental additions of IDs for older issues occurring in late
2006, or (b) removal of some IDs because they were duplicates
or later proven to be false reports. Both occurrences are
relatively common for any vulnerability information repository
that seeks to maintain historical accuracy.

4 of 38

5) Unsafe storage under the web document root (webroot) is
number 10 for all of 2006, not 13.

Data Sets

Three main data sets were used in this analysis.

OVERALL: this data set consists of all CVEs that were first publicly
reported in 2001 or later (earlier CVEs do not have the appropriate
fields filled out.) CVE includes all types of software, whether from a
major vendor or an individual hobbyist programmer, as long as the
associated vulnerability has been reported by the developer or
posted by a researcher or third party to sources such as mailing
lists and vulnerability databases. CVE only includes distributable
software, i.e., it does not include issues that are reported for
custom software in specific web sites. While CVE data is
incomplete, it is estimated that it is 80% complete relative to all
major mailing lists and vulnerability databases, with the likely
exception of data from 2003.

OS VENDOR: this data set identifies CVEs that are associated with
operating system (OS) vendor advisories, which would capture
vulnerabilities in the kernel, as well as applications that are
supported by the OS vendor. The data was limited to CVEs that
have one or more references from the following sources. For open
source OS vendors, the following sources were used: DEBIAN,
FREEBSD, MANDRAKE/MANDRIVA, NETBSD, OPENBSD, REDHAT,
and SUSE. The closed source OS vendors included: AIXAPAR,
APPLE, CISCO, HP, MS, MSKB, SCO, SGI, SUN, and SUNALERT.
CVE does not have the internal data fields to support more fine-
grained analysis for major non-OS vendors.

OPEN/CLOSED SOURCE: open and closed source operating
system (OS) vendors were using the same methods and categories
as described in the ‘OS VENDOR’ section. Because some closed
source vendors such as Apple have significant codebase overlap
with open source products, any overlapping CVEs were removed

5 of 38

from the data set. Both open and closed sets had at least 1700
vulnerabilities.

In each data set, vulnerabilities were not removed if they were
marked as ‘disputed.’ Many disputes are incorrect or unresolved.

For 2006 data, 95% of all of CVE's primary data sources were
covered, in order to offer the most complete data feasible for this
year. The remaining issues are extremely complex or pose larger
questions for CVE's content decisions. Due to resource limitations,
MITRE was not able to achieve this level of completeness for earlier
years.

Trend Table Color Key

In the HTML pages, the following color key is used for trend tables.

GRAY: used in comparisons to help visually separate one data set
from another

RED: a top 10 for that year

GREEN: during that year, the vulnerability's rank was at least 5
points BELOW the average rank for that vulnerability

YELLOW: during that year, the vulnerability's rank was at least 5
points ABOVE the average rank for that vulnerability

So, green on the left indicates vulns with RISING popularity, as will
yellow on the right. Green on the right indicates vulns with
FALLING popularity, as will yellow on the left.

Table 1 Analysis: Overall Trends

The most notable trend is the sharp rise in public reports for
vulnerabilities that are specific to web applications.

6 of 38

Buffer overflows were number 1 year after year, but that changed
in 2005 with the rise of web application vulnerabilities, including
cross-site scripting (XSS), SQL injection, and remote file inclusion,
although SQL injection is not limited just to web applications. In
fact, so far in 2006, buffer overflows are only #4.

There are probably several contributing factors to this increase in
web vulnerabilities:

1) The most basic data manipulations for these vulnerabilities are

very simple to perform, e.g., ‘'‘ for SQL injection and
‘<script>alert('hi')</script>‘ for XSS. This makes it easy for
beginning researchers to quickly test large amounts of software.

2) There is a plethora of freely available web applications. Much of

the code is alpha or beta, written by inexperienced
programmers with easy-to-learn languages such as PHP, and
distributed on high-traffic sites. The applications might have a
small or non-existent user base. Such software is often rife
with easy-to-find vulnerabilities, and it is often a target for
beginning researchers. The large number of these ‘fish-in-a-
barrel’ applications is probably a major contributor to the overall
trends.

3) With XSS, every input has the potential to be an attack vector,

which does not occur with other vulnerability types. This leaves
more opportunity for a single mistake to occur in a program that
otherwise protects against XSS. SQL injection also has many
potential attack vectors.

4) Despite popular opinion that XSS is easily prevented, it has

many subtleties and variants. Even solid applications can have
flaws in them; consider non-standard browser behaviors that try
to ‘fix’ malformed HTML, which might slip by a filter that uses
regular expressions. Finally, until early 2006, the PHP
interpreter had a vulnerability in which it did not quote error
messages, but many researchers only reported the surface-level
‘resultant’ XSS instead of figuring out whether there was a
different ‘primary’ vulnerability that led to the error.

7 of 38

5) There is some evidence that over the past couple of years, web

defacers have taken an interest in performing and publishing
their own research. This is probably due to the ease of finding
vulnerabilities, combined with the presence of high-risk
problems such as PHP file inclusion, which can be used to
remotely install powerful, easily-available backdoor code.
Based on customer posts to numerous vendor forums, there is
solid evidence that remote file inclusion is regularly used to
compromise web servers, which also helps to explain its
popularity.

Overall Trends: Other Interesting Results

1) PHP remote file inclusion skyrocketed in 2006, nearly 1000%

over the previous year. This is most likely a reflection of RFI's
role in creating botnets using web servers [Evron].

2) For 2006, the top 5 vulnerability types are responsible for 57%

of all CVEs. With over 35 vulnerability types used in this report,
and dozens more as currently identified in CWE, this shows how
most public reports concentrate only on a handful of
vulnerability types.

3) Cross-Site Request Forgery (CSRF) remains a ‘sleeping giant’

[Grossman]. CSRF appears very rarely in CVE, less than 0.1%
in 2006, but its true prevalence is probably far greater than
this. This is in stark contrast to the results found by web
application security experts including Jeremiah Grossman,
RSnake, Andrew van der Stock, and Jeff Williams. These
researchers regularly find CSRF during contract work, noting
that it is currently not easy to detect automatically. The dearth
of CSRF in CVE suggests that non-contract researchers are
simply not investigating this issue. If (and when) researchers
begin to focus on this issue, there will likely be a significant
increase in CSRF reports.

8 of 38

4) Over the years, there has been a noticeable decline in shell
metacharacters, symbolic link following, and directory traversal.
It is unclear whether software is actually improving with respect
to these problems, or if they are not investigated as frequently.

5) Information leaks appear regularly. There are 2 main reasons

for the prominence: ‘information leak’ is a more general class
than others (see CWE for more precise sub-categories), and
when an error message includes a full path, that is usually
categorized as an information leak, although it might be
resultant from a separate primary vulnerability.

6) The inability to handle malformed inputs (dos-malform), which

usually leads to a crash or hang, is also a general class.
Malformed-input vulnerabilities have not been studied as closely
as injection vulnerabilities, at least with respect to identifying
the root cause of the problem. Also, many reports do not
specify how an input is malformed. There are likely many cases
in which a researcher accidentally triggers a more serious
vulnerability but does not perform sufficient diagnosis to
determine the primary issue. Finally, vendor reports might only
identify an issue as being related to ‘malformed input,’ which
obscures the primary cause.

7) As the percentage of buffer overflows has declined, there has

been an increase in related vulnerability types, including integer
overflows (int-overflow), signedness errors, and double frees
(double-free). These are still very low-percentage, probably
due to their relative newness and difficulty of detection
compared to classic overflows. In addition, these newly
emerging vulnerability types might be labeled as buffer
overflows, since they often lead to buffer overflows, and the
‘buffer overflow’ term is used interchangeably for attack, cause,
and effect.

9 of 38

8) Other interesting web application vulnerabilities are webroot
(storage of sensitive files under the web document root), form-
field (web parameter tampering), upload of files with executable
extensions (e.g., file.php.gif), eval injection, and Cross-Site
Request Forgery (CSRF).

Table 2 and 3 Analysis: OS vs. non-OS

Given the increase in web application vulnerabilities and the
likelihood that it is partially due to researcher interest in software
with small user bases, an analysis was performed based solely on
advisories from operating system (OS) vendors. These advisories
frequently include the OS kernel and key applications that are
supported by the vendor. See the Data Sets section for more
information. Unfortunately, more precise data sets could not be
generated.

Table 2 provides the data for OS vendor advisories alone. Table 3
contrasts the OS vendor advisories with all other reported issues.

There are several notable results:

1) Integer overflows are heavily represented in OS vendor

advisories, rising to number 2 in 2006, even though they
represent less than 5% of vulnerabilities overall. This probably
reflects growing interest by expert researchers in finding integer
overflows, along with the tendency of expert researchers to
evaluate widely deployed software. The affected software
ranges widely, including the kernel, cryptographic modules, and
multimedia file processors such as image viewers and music
players. After 2004, many of the reported issues occur in
libraries or common DLLs.

2) Buffer overflows are still #1. This is probably due to under-

representation of web applications in OS advisories, relative to
other CVEs. In addition, as related issues like integer overflows
increase, they might be detected or reported as buffer

10 of 38

overflows, since buffer overflows are frequently resultant from
integer overflows.

3) XSS is still very common, even in OS advisories, and it appears

with nearly the same frequency as integer overflows in 2006.
An informal analysis shows that the affected software includes
web servers, web browsers, email clients, administrative
interfaces, and Wiki/CMS.

4) With the exception of XSS, there is a wide gulf between web-

related vulnerabilities in OS advisories and other issues. SQL
injection is at number 7 for OS advisories, and PHP remote file
inclusion is practically nonexistent. Many other web-related
vulnerabilities occupy the bottom of the chart. For SQL
injection, it is possible that most OS-supported applications do
not use databases, or aren't web accessible. SQL injection
vulnerabilities are not web-specific, but it seems that they are
rarely reported for non-web applications, so it is possible that
this reflects some researcher bias.

5) Directory traversal and format string vulnerabilities are

frequently reported at a higher rate in OS vendor advisories
than elsewhere. The reason is unclear, because these
vulnerabilities are not restricted to local attack vectors, so one
might expect that they would also appear regularly in web
applications. However, it is likely that researchers do not focus
on format strings because they are rarely exploitable for code
execution in languages other than C. In the case of PHP, many
PHP functions are subject to both remote file inclusion and
directory traversal, and it might be that only the file inclusion is
publicly reported. (In fact, the overlap is so close that this
sometimes causes difficulties with classification).

6) In 2006 so far, more than a quarter of the OS vendor advisories

did not have sufficient details to actually classify the
vulnerability (type ‘unk’), at 26.8%. This is in sharp contrast to
the non-OS issues, which comprise less than 8%. However,
because of the data sets in question, the non-OS CVEs will
include many non-coordinated disclosures that would, by their

11 of 38

nature, provide more details. Table 4 demonstrates that it is not
just closed source vendor advisories that omit sufficient details
for vulnerability classification.

7) The ‘top 5’ and ‘top 10’ vulnerabilities in each year are a much

smaller percentage of total vulnerabilities in OS vendor
advisories than non-OS issues. For example, the 5 most
common vulnerabilities in 2006 accounted for 30.2% of OS
vendor issues, but 65.3% for non-OS. For OS issues, this
suggests an increasing diversity in the kinds of vulnerabilities
being reported, whereas for other issues, that diversity appears
to be decreasing. This is also reflected in the ‘other’ category,
in which OS vendors have a much larger percentage of ‘other’
issues in 2006 than non-OS. However, this could be another
reflection of the domination of web application vulnerabilities.

Table 4 Analysis: Open and Closed Source

Table 4 compares the vulnerability type distribution between the
open source and closed source operating system (OS) vendors. See
the ‘Data Sets’ section for more information on how the data sets
were generated. As a reminder, CVEs that overlapped both open
and closed source sets were omitted.

** IMPORTANT ** It is inappropriate to use these results to
objectively compare the relative security of open and closed source
products, so the report excludes raw numbers. Both sets had at
least 2500 vulnerabilities. There are too many variations in vendor
advisory release policies, possible differences in research
techniques, and other factors cited in [Christey]. And, simply put,
there is too much potential for raw numbers to be misused and
misinterpreted.

However, some results pose interesting questions that merit more
in-depth investigation. These discrepancies might reflect
differences in vulnerability research techniques, researcher sub-

12 of 38

communities, vendor disclosure policies, and development practices
and APIs, but this has not been proven.

After the release of the draft in October 2006, various vendor and
research representatives were consulted, but there were not any
clear conclusions. The research and vendor communities are
encouraged to investigate the underlying causes for these
differences, which could provide lessons learned for all software
developers, open and closed source alike.

Some of the most notable results are:

1) The percentage of ‘unknown’ vulnerabilities - those that could

not be classified due to lack of details - is significantly higher in
closed source than open source advisories, at 43% in 2006,
compared to only 8% for open source. With such a wide
discrepancy, it is difficult to know whether any of the remaining
results in this section are significant.

2) Buffer overflows are number 1 for both open and closed, with

roughly the same percentage in each year, with the exception of
2004.

3) Symbolic link vulnerabilities appear at a higher rate in open

source than closed source, although this might be due to the
non-Unix OSes in the data set. While Windows has ‘shortcuts’
(.LNK) that are similar to Unix links, they appear very rarely in
Microsoft advisories, or for Windows-based applications. It is
not clear whether this is due to under-research or
API/development differences. The authors recall that at least
one researcher for a Linux distribution regularly investigated
symbolic link issues in 2004 and 2005, so researcher bias might
also be a factor.

4) Format string vulnerabilities appear more frequently in open

source. There are probably several factors. First, susceptible
API library calls such as printf() are easily found in source code
using crude methods, whereas binary reverse engineering
techniques are not conducted by many researchers (this might

13 of 38

also be an explanation for symbolic link issues). Second, many
format string problems seem to occur in rarely-triggered error
conditions, which makes them more difficult to test with black
box methods.

 Perhaps most surprising: in 2006, the non-Unix closed source

advisories barely covered any format strings at all. It is not
clear why there would be such a radical difference.

5) Malformed-input vulnerabilities usually appeared more

frequently in closed source advisories than open source, except
for 2006. This historical tendency might be due to a lack of
details in closed source advisories. If an advisory mentions a
problem due to ‘malformed data,’ it might be assigned the dos-
malform type. Another factor might be due to black box
techniques. It seems likely that fuzzers and other tools would
be used more frequently against closed source products than
open source, but this is not known. A third factor might be
modifications in CVE's data entry procedures, which eventually
began to enter ‘unknown’ flaw types for vague terms such as
‘memory corruption.’

6) XSS vulnerabilities appear more frequently in open source

advisories than closed, but this might be a reflection of vendor
release policies for advisories. It seems that open source
vendors are more likely to release advisories for smaller
packages.

7) Integer overflows have been roughly the same rank for open

and closed source. This is a curious similarity, since one might
not expect open and closed source analysis techniques to be
equally capable in finding these problems.

8) Another interesting example is in the use of default or hard-

coded passwords. Over the years, very few open source vendor
advisories have mentioned default passwords, whereas they
appear with some regularity in closed source advisories, even in
the top 10 as recently as 2005. It is not clear whether this is a

14 of 38

difference in shipping/configuration practices or vendor
disclosure policies.

9) During the October 2006 analysis, it was discovered that shell

metacharacter issues appear less frequently in non-Unix closed
source than other closed source advisories. This result was
verified using the latest data; it is not evident in Table 4. This
could be due to usage patterns of API functions such as
CreateProcess() for Windows, and system() for Unix. This result
is being reported because it is the most concrete example of
how API functions might play a role in implementation-level
vulnerabilities.

Possible Future Work

1) The vulnerability types could be tied to other CVE-normalized

data, such as IDS, incident databases, or vulnerability scanning
results. This could determine the types of vulnerabilities that are
being actively exploited or detected in real-world enterprises.

2) More precise classification could be informative. Approximately

15% of CVEs have vulnerability types that cannot be described
using the current classification scheme. Another 10% are
‘unknown’ vulnerabilities whose disclosures do not have
sufficient details to determine any vulnerability type, but this
problem is unavoidable, since some vendors do not release
these details.

3) A crude measure of researcher diversity might be possible by

linking data to other vulnerability databases that record this
information. This could be used to determine if the raw number
of researchers is increasing (probably), how that rate is
increasing relative to the number of vulnerabilities (unknown),
and how many different bug types are found by the average
researcher (probably fairly small). If such data is available,
then a further breakdown could be performed based on
professional researchers versus others.

15 of 38

4) More precise data sets could be identified, such as a cross-

section of market leaders in various product categories, not just
OS vendor advisories. CVE does not record this type of
information.

Notes on Potential Bias

The diversity of both researchers and vendor disclosure practices
introduces several unmeasurable biases, as described in more detail
in [Christey].

In the overall results, 2003's issues have nearly 20% with
vulnerabilities that are ‘not specified’ by the CVE analyst, which is
inconsistent with statistics from other years. Many of these
vulnerabilities were briefly reviewed in October 2006, and they are
in fact of type ‘other.’ This discrepancy has not been sufficiently
explained, although it is probably at least partially due to the
relative percentage of CVEs in OS vendor advisories to other CVEs,
since 2003 was a low-output year for CVE and thus the
concentration was in high-priority software.

Some vulnerability types are probably under-represented due to
classification difficulty. For example, the ‘form-field’ type (web
parameter tampering) might occasionally get classified as an
authentication error, depending on how the original researcher
reports the issue.

16 of 38

(In)Frequently Asked Questions

1) Why aren't you giving out raw numbers for open vs. closed

source?

 Answer: we already said why. See paragraph 2 of the Table 4

analysis for a reminder, the one marked ‘IMPORTANT.’

2) Why did you release the draft report in October, without waiting

for complete 2006 data?

 Answer: when MITRE mentioned the preliminary results at the

Cyber Security Executive Summit on September 13, there was a
lot more interest than we had originally anticipated. We hoped
that follow-up discussion of the results might help us to provide
a better report when 2006 was complete.

3) How does this compare with the other summaries you've posted

in the past? Why have the numbers and percentages changed
for older years?

 Answer: (1) we occasionally add CVEs for older issues, (2)

some of the previously released summaries were cumulative
instead of offering a year-by-year breakdown, and (3)
eventually, as a new type of vulnerability is reported more
frequently, the CVE project notices it enough to give it a name,
or at least a type. Once we do that, we can go back and update
the older CVEs that also had the issue. However, we often rely
on keyword searches in CVE descriptions for doing these kinds
of updates. The earliest reports of new vulnerability types
probably don't get captured fully, because CVE descriptions
frequently vary in the early days or months of a new
vulnerability type. Most updates to these vulnerability trends
trigger an informal review of the ‘other’ vulnerabilities for the
data set in order to update the type fields.

17 of 38

4) There are a lot more vulnerability types than what you've

covered.

 Answer: That's an observation, not a question. If a certain

vulnerability type is not on the list, then it probably didn't
appear frequently enough for the CVE project to track closely.
There are several reasons: (1) the vulnerability type is selected
from a large dropdown menu during CVE refinement, but also
(2) our work in the Common Weakness Enumeration (CWE) is
producing hundreds of vuln types, and we want that to become
a little more stable before doing the next round of modifications
to CVE data. Finally, (3) with approximately 4,000
vulnerabilities marked ‘other’ or ‘not specified’, it is cost-
prohibitive to review each CVE when the set of categories is
updated.

5) Why isn't my favorite web vulnerability here?

 Answer: Many web vulnerabilities are difficult to classify

because they are ‘multi-factor,’ i.e., they are composed of
multiple bugs, weaknesses, and/or design limitations. Other
web issues are really just specialized attacks that use other
primary vulnerabilities. For example, most HTTP response
splitting problems rely on CRLF injection, so they are classified
under CRLF injection.

Credits

Large-scale trend analyses like this are not possible without the
body of knowledge that has been formed by hundreds or thousands
of researchers, from hobbyists to professionals.

Thanks to the following for substantive feedback on the initial draft,
sometimes in the form of a question that required more
investigation: Bill Heinbockel, Chris Wysopal, and Mark Curphey.
Thanks to Jeremiah Grossman, Andrew van der Stock, RSnake, and
Jeff Williams for their feedback on CSRF detection.

18 of 38

References

[Christey] ‘Open Letter on the Interpretation of 'Vulnerability
Statistics'‘, Steve Christey, Bugtraq, Full-Disclosure January 5,
2006, http://lists.grok.org.uk/pipermail/full-disclosure/2006-
January/041028.html

[Evron] ‘Web server botnets and hosting farms as attack platforms’,
Gadi Evron, Kfir Damari & Noam Rathaus, Virus Bulletin, February
2007

[Grossman] ‘CSRF, the sleeping giant’, Jeremiah Grossman,
http://jeremiahgrossman.blogspot.com/2006/09/csrf-sleeping-
giant.html

Flaw Terminology

Type: auth
CWE: CWE-289, CWE-288, CWE-302, CWE-305, CWE

294, CWE-290, CWE-287, CWE-303
Description: Weak/bad authentication problem

Type: buf
CWE: CWE-119, CWE-120
Description: Buffer overflow

Type: CF
CWE: none
Description: General configuration problem, not perm or default

Type: crlf
CWE: CWE-93
Description: CRLF injection

19 of 38

Type: crypt
CWE: CWE-310, CWE-311, CWE-347, CWE-320, CWE-

325
Description: Cryptographic error (poor design or

implementation), including plaintext
storage/transmission of sensitive information.

Type: CSRF
CWE: CWE-352
Description: Cross-Site Request Forgery (CSRF)

Type: default
CWE: N/A
Description: Insecure default configuration, e.g., passwords or

permissions

Type: design
CWE: none
Description: Design problem, generally in protocols or

programming languages. Since 2005, its use has
been limited due to the highly general nature of
this type.

Type: dos-flood
CWE: CWE-400
Description: DoS caused by flooding with a large number of

legitimately formatted requests/etc.; normally
DoS is a crash, or spending a lot more time on a
task than it ‘should’

Type: dos-malform
CWE: CWE-238, CWE-234, CWE-166, CWE-230, many

others
Description: DoS caused by malformed input

20 of 38

Type: dos-release
CWE: CWE-404
Description: DoS because system does not properly release

resources

Type: dot
CWE: CWE-22, CWE-23, CWE-36
Description: Directory traversal (file access via ‘..’ or variants)

Type: double-free
CWE: CWE-415
Description: Double-free vulnerability

Type: eval-inject
CWE: CWE-95
Description: Eval injection

Type: form-field
CWE: CWE-472
Description: CGI program inherently trusts form field that

should not be modified (i.e., should be stored
locally)

Type: format-string
CWE: CWE-134
Description: Format string vulnerability; user can inject format

specifiers during string processing.

Type: infoleak
CWE: CWE-205, CWE-212, CWE-203, CWE-209, CWE-

207, CWE-200, CWE-215, others
Description: Information leak by a product, which is not the

result of another vulnerability; typically by design
or by producing different ‘answers’ that suggest the
state; often related to configuration / permissions
or error reporting/handling.

21 of 38

Type: int-overflow
CWE: CWE-190
Description: A numeric value can be incremented to the point

where it overflows and begins at the minimum
value, with security implications. Overlaps
signedness errors.

Type: link
CWE: CWE-61, CWE-64
Description: Symbolic link following

Type: memleak
CWE: CWE-401
Description: Memory leak (doesn't free memory when it

should); use this instead of dos-release

Type: metachar
CWE: CWE-78
Description: Unescaped shell metacharacters or other unquoted

‘special’ char's; currently includes SQL injection but
not XSS.

Type: msdos-device
CWE: CWE-67
Description: Problem due to file names with MS-DOS device

names.

Type: not-specified
CWE: none
Description: The CVE analyst has not assigned a flaw type to

the issue, typically similar to ‘other’.

Type: other
CWE: none
Description: Other vulnerability; issue could not be described

with an available type at the time of analysis.

22 of 38

Type: pass
CWE: CWE-259
Description: Default or hard-coded password

Type: perm
CWE: CWE-276
Description: Assigns bad permissions, improperly calculates

permissions, or improperly checks permissions

Type: php-include
CWE: CWE-98
Description: PHP remote file inclusion

Type: priv
CWE: CWE-266, CWE-274, CWE-272, CWE-250, CWE-

264, CWE-265, CWE-268, CWE-270, CWE-271,
CWE-269, CWE-267

Description: Bad privilege assignment, or privileged
process/action is unprotected/unauthenticated.

Type: race
CWE: CWE-362, CWE-366, CWE-364, CWE-367, CWE-

421, CWE-368, CWE-363, CWE-370
Description: General race condition (NOT SYMBOLIC LINK

FOLLOWING (link)!)

Type: rand
CWE: CWE-330, CWE-331, CWE-332, CWE-338, CWE-

342, CWE-341, CWE-339, others
Description: Generation of insufficiently random numbers,

typically by using easily guessable sources of
‘random’ data

Type: relpath
CWE: CWE-426, CWE-428, CWE-114
Description: Untrusted search path vulnerability - Relies on

search paths to find other executable programs or
files, opening up to Trojan horse attacks, e.g.,
PATH environment variable in Unix.

23 of 38

Type: sandbox
CWE: CWE-265
Description: Java/etc. sandbox escape - NOT BY DOT-DOT!

Type: signedness
CWE: CWE-195, CWE-196
Description: Signedness error; a numeric value in one

format/representation is improperly handled when
it is used as if it were another
format/representation. Overlaps integer overflows
and array index errors.

Type: spoof
CWE: CWE-290, CWE-350, CWE-347, CWE-345, CWE-

247, CWE-292, CWE-291
Description: Product is vulnerable to spoofing attacks, generally

by not properly verifying authenticity.

Type: sql-inject
CWE: CWE-89
Description: SQL injection vulnerability

Type: type-check
CWE: unknown
Description: Product incorrectly identifies the type of an input

parameter or file, then dispatches the wrong
‘executable’ (possibly itself) to process the input, or
otherwise misrepresents the input in a security-
critical way.

Type: undiag
CWE: none
Description: Undiagnosed vulnerability; report contains enough

details so that the type could be determined by
additional in-depth research, such as an un-
commented exploit, or diffs in an open source
product.

24 of 38

Type: unk
CWE: none
Description: Unknown vulnerability; report is too vague to

determine type of issue.

Type: upload
CWE: CWE-434
Description: Product does not restrict the extensions for files

that can be uploaded to the web server, leading to
code execution if executable extensions are used in
filenames, such as .asp, .php, and .shtml.

Type: webroot
CWE: CWE-219, CWE-433
Description: Storage of sensitive data under web document root

with insufficient access control.

Type: XSS
CWE: CWE-79, CWE-80, CWE-87, CWE-85, CWE-82,

CWE-81, CWE-83, CWE-84
Description: Cross-site scripting (aka XSS)

25 of 38

Table 1: Overall Results

26 of 38

Table 1: Overall Results (continued)

27 of 38

Table 1: Overall Results (concluded)

Top 5/10 Diversity Percentages per year

For the 'top N' vulnerabilities in each year, the table identifies the
total percentage of overall vulnerabilities. For example, a figure of
45.0 for Top 5 says that the Top 5 accounted for 45% of all
reported vulnerabilities in that year. This provides a rough estimate
of how diverse the reported vulnerabilities were.

28 of 38

Table 2: OS Vendors

29 of 38

Table 2: OS Vendors (continued)

30 of 38

Table 2: OS Vendors (concluded)

Top 5/10 Diversity Percentages per year

For the 'top N' vulnerabilities in each year, the table identifies the
total percentage of overall vulnerabilities. For example, a figure of
45.0 for Top 5 says that the Top 5 accounted for 45% of all
reported vulnerabilities in that year. This provides a rough estimate
of how diverse the reported vulnerabilities were.

31 of 38

Table 3: OS Vendors vs. Others

32 of 38

Table 3: OS Vendors vs. Others (continued)

33 of 38

Table 3: OS Vendors vs. Others (continued)

34 of 38

Table 3: OS Vendors vs. Others (continued)

35 of 38

Table 3: OS Vendors vs. Others (concluded)

Top 5/10 Diversity Percentages per year

For the 'top N' vulnerabilities in each year, the table identifies the
total percentage of overall vulnerabilities. For example, a figure of
45.0 for Top 5 says that the Top 5 accounted for 45% of all
reported vulnerabilities in that year. This provides a rough estimate
of how diverse the reported vulnerabilities were.

36 of 38

Table 4: Open and Closed Source (OS vendors)

37 of 38

Table 4: Open and Closed Source (OS vendors)
(continued)

38 of 38

Table 4: Open and Closed Source (OS vendors)
(concluded)

For the 'top N' vulnerabilities in each year, the table identifies the
total percentage of overall vulnerabilities. For example, a figure of
45.0 for Top 5 says that the Top 5 accounted for 45% of all
reported vulnerabilities in that year. This provides a rough estimate
of how diverse the reported vulnerabilities were.

